過(guò)M(2,4)作直線與拋物線y2=8x只有一個(gè)公共點(diǎn),這樣的直線有(   )條
A.0B.1C.2D.4
C

試題分析:解:由題意可知點(diǎn)(2,4)在拋物線y2=8x上,故過(guò)點(diǎn)(2,4)且與拋物線y2=8x只有一個(gè)公共點(diǎn)時(shí)只能是,i)過(guò)點(diǎn)(2,4)且與拋物線y2=8x相切,ii)過(guò)點(diǎn)(2,4)且平行與對(duì)稱(chēng)軸.故選C
點(diǎn)評(píng):本題主要考查拋物線的基本性質(zhì).屬基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知曲線上任意一點(diǎn)到點(diǎn)的距離與到直線的距離相等.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè),軸上的兩點(diǎn),過(guò)點(diǎn)分別作軸的垂線,與曲線分別交于點(diǎn),直線與x軸交于點(diǎn),這樣就稱(chēng)確定了.同樣,可由確定了.現(xiàn)已知,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知直線經(jīng)過(guò)拋物線的焦點(diǎn),且與拋物線交于兩點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn).

(Ⅰ)證明:為鈍角.
(Ⅱ)若的面積為,求直線的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)拋物線的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,若以MF為直徑的圓過(guò)點(diǎn)(0,2),則C的方程為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)F為拋物線的焦點(diǎn),為拋物線上不同的三點(diǎn),點(diǎn)是△ABC的重心,為坐標(biāo)原點(diǎn),△、△、△的面積分別為、,則(    )
A.9B.6 C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

己知拋物線方程為),焦點(diǎn)為,是坐標(biāo)原點(diǎn),是拋物線上的一點(diǎn),軸正方向的夾角為60°,若的面積為,則的值為(    )
A.2B.C.2或D.2或

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

當(dāng)a為任意實(shí)數(shù)時(shí),直線恒過(guò)定點(diǎn)P,則過(guò)點(diǎn)P的拋物線的標(biāo)準(zhǔn)方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線的焦點(diǎn)為F,A, B是該拋物線上的兩點(diǎn),弦AB過(guò)焦點(diǎn)F,且,則線段AB的中點(diǎn)坐標(biāo)是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)拋物線的準(zhǔn)線與x軸交于點(diǎn)Q,若過(guò)點(diǎn)Q的直線 與拋物線有公共點(diǎn),則直線的斜率的取值范圍是­­­____________ 

查看答案和解析>>

同步練習(xí)冊(cè)答案