【題目】如圖,四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,
(1)證明:A1C⊥平面BB1D1D;

(2)求平面OCB1與平面BB1D1D的夾角θ的大。

【答案】
(1)證明:∵A1O⊥面ABCD,且BD面ABCD,∴A1O⊥BD;

又∵在正方形ABCD中,AC⊥BD,A1O∩AC=O,

∴BD⊥面A1AC,且A1C面A1AC,故A1C⊥BD.

在正方形ABCD中,∵ ,∴AO=1,

在Rt△A1OA中,∵ ,∴A1O=1.

設(shè)B1D1的中點為E1,則四邊形A1OCE1為正方形,∴A1C⊥E1O.

又BD面BB1D1D,且E10面BB1D1D,且BD∩E1O=O,

∴A1C⊥面BB1D1D;


(2)解:以O(shè)為原點,分別以O(shè)B,OC,OA1所在直線為x,y,Z軸建立如圖所示空間直角坐標(biāo)系,

則B(1,0,0),C(0,1,0),A1(0,0,1),B1(1,1,1),

由(1)知,平面BB1D1D的一個法向量

,

設(shè)平面OCB1的法向量為

,得 ,取z=﹣1,得x=1.

=

所以,平面OCB1與平面BB1D1D的夾角θ為


【解析】(1)要證明A1C⊥平面BB1D1D,只要證明A1C垂直于平面BB1D1D內(nèi)的兩條相交直線即可,由已知可證出A1C⊥BD,取B1D1的中點為E1 , 通過證明四邊形A1OCE1為正方形可證A1C⊥E1O.由線面垂直的判定定理問題得證.(2)以O(shè)為原點,分別以O(shè)B,OC,OA1所在直線為x,y,Z軸建立空間直角坐標(biāo)系,然后求出平面OCB1與平面BB1D1D的法向量,利用法向量所成的角求平面OCB1與平面BB1D1D的夾角θ的大小.
【考點精析】利用直線與平面垂直的判定對題目進行判斷即可得到答案,需要熟知一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4﹣4;坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程是 (φ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立坐標(biāo)系,曲線C2的坐標(biāo)系方程是ρ=2,正方形ABCD的頂點都在C2上,且A,B,C,D依逆時針次序排列,點A的極坐標(biāo)為(2, ).
(1)求點A,B,C,D的直角坐標(biāo);
(2)設(shè)P為C1上任意一點,求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點,焦點在x軸上,離心率為,過橢圓C上一點P(2,1)作x軸的垂線,垂足為Q.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點Q的直線l交橢圓C于點A,B,且3+=,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,則CD與平面BDC1所成角的正弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的半焦距為,左焦點為,右頂點為,拋物線與橢圓交于兩點,若四邊形是菱形,則橢圓的離心率是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}的首項為a1 , 公差為﹣1的等差數(shù)列,Sn為其前n項和,若S1 , S2 , S4成等比數(shù)列,則a1=(
A.2
B.﹣2
C.
D.﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1﹣an=2,等比數(shù)列{bn}滿足b1=a1 , b4=a4+1.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:三棱錐P﹣ABC中,PA⊥底面ABC,若底面ABC是邊長為2的正三角形,且PB與底面ABC所成的角為 .若M是BC的中點,求:

(1)三棱錐P﹣ABC的體積;
(2)異面直線PM與AC所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,且,,平面底面的中點, 是棱的中點, ,.

(1)求證:平面BDM; (2)D到面PBC距離;

(3)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案