設(shè)f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0)
,若對于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,則a的取值范圍是(  )
A.[
5
2
,4]
B.[4,+∞)C.(0,
5
2
]
D.[
5
2
,+∞)
因為f(x)=
2x2
x+1
,
當x=0時,f(x)=0,
當x≠0時,f(x)=
2
1
x
1
x2
=
2
(
1
x
+
1
2
) 2-
1
4
,由0<x≤1,∴0<f(x)≤1.
故0≤f(x)≤1
又因為g(x)=ax+5-2a(a>0),且g(0)=5-2a,g(1)=5-a.
故5-2a≤g(x)≤5-a.
所以須滿足
5-2a≤0
5-a≥1
?
5
2
≤a≤4.
故選A.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
2x2x+1
,g(x)=ax+5-2a(a>0).
(1)求f(x)在x∈[0,1]上的值域;
(2)若對于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0)
,若對于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,則實數(shù)a的取值范圍是( 。
A、[
5
2
,4]
B、[-
1
2
,2]
C、[1,4]
D、[
1
2
,
5
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0)
,若對于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,則a的取值范圍是(  )
A、[
5
2
,4]
B、[4,+∞)
C、(0,
5
2
]
D、[
5
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0),若對于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,則a的取值范圍是
5
2
≤a≤4
5
2
≤a≤4

查看答案和解析>>

同步練習冊答案