(2012•馬鞍山二模)現(xiàn)對某市工薪階層關(guān)于“樓市限購政策”的態(tài)度進行調(diào)查,隨機抽查了50人,他們月收入(單位:百元)的頻數(shù)分布及對“樓市限購政策”贊成人數(shù)如下表:
月收入(單位:百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 8 12 5 2 1
(I)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面2x2列聯(lián)表,并回答是否有99%的把握認(rèn)為月收入以5500元為分界點對“樓市限購政策”的態(tài)度有差異?
月收入不低于55百元的人數(shù) 月收入低于55百元的人數(shù) 合計
贊成
不贊成
合計
(II)若從月收入在[15,25),[25,35)的被調(diào)查對象中各隨機選取兩人進行調(diào)查,記選中的4人中不贊成“樓市限購政策”人數(shù)為ξ,求隨機變量ξ的分布列及數(shù)學(xué)期望.
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)
參考值表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
K0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
分析:(Ⅰ)根據(jù)頻數(shù)分布及對“樓市限購政策”贊成人數(shù)的表格,可得2×2列聯(lián)表,根據(jù)列聯(lián)表中的數(shù)據(jù),計算K2的值,即可得到結(jié)論;
(Ⅱ)ξ的可能取值有0,1,2,3,求出相應(yīng)的概率,可得ξ的分布列及數(shù)學(xué)期望.
解答:解:(Ⅰ)根據(jù)題意得2×2列聯(lián)表:
月收入不低于55百元人數(shù) 月收入低于55百元人數(shù) 合計
贊成 3 39 32
不贊成 7 11 18
合計 10 40 50
…(2分)
假設(shè)月收入以5500為分界點對“樓市限購政策”的態(tài)度沒有差異,根據(jù)列聯(lián)表中的數(shù)據(jù),得到:
K2=
50×(3×11-7×29)2
10×40×32×18
≈6.27<6.635…(4分)
假設(shè)不成立.
所以沒有99%的把握認(rèn)為月收入以5500為分界點對“樓市限購政策”的態(tài)度有差異.…(6分)
(Ⅱ)ξ的可能取值有0,1,2,3.
P(ξ=0)=
C
2
4
C
2
5
×
C
2
8
C
2
10
=
6
10
×
28
45
=
84
225
;P(ξ=1)=
C
1
4
C
2
5
×
C
2
8
C
2
10
+
C
2
4
C
2
5
×
C
1
8
C
1
2
C
2
10
=
104
225
;
P(ξ=2)=
C
1
4
C
2
5
×
C
1
8
C
1
2
C
2
10
+
C
2
4
C
2
5
×
C
2
2
C
2
10
=
35
225
;P(ξ=3)=
C
1
4
C
2
5
×
C
2
2
C
2
10
=
2
225

所以ξ的分布列是
ξ 0 1 2 3
P
84
225
104
225
35
225
2
225
…(10分)
所以ξ的期望值是Eξ=0×
84
225
+1×
104
225
+2×
35
225
+3×
2
225
=
4
5
…(12分)
點評:本題考查獨立性檢驗,考查離散型隨機變量的分布列與期望,考查學(xué)生的閱讀與計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•馬鞍山二模)設(shè)同時滿足條件:①
bn+bn+2
2
bn+1
;②bn≤M(n∈N+,M是與n無關(guān)的常數(shù))的無窮數(shù)列{bn}叫“嘉文”數(shù)列.已知數(shù)列{an}的前n項和Sn滿足:Sn=
a
a-1
(an-1)
(a為常數(shù),且a≠0,a≠1).
(1)求{an}的通項公式;
(2)設(shè)bn=
2Sn
an
+1
,若數(shù)列{bn}為等比數(shù)列,求a的值,并證明此時{
1
bn
}
為“嘉文”數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•馬鞍山二模)現(xiàn)對某市工薪階層關(guān)于“樓市限購政策”的態(tài)度進行調(diào)查,隨機抽查了50人,他們月收入(單位:百元)的頻數(shù)分布及對“樓市限購政策”贊成人數(shù)如下表:
月收入(單位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 8 12 5 2 1
(Ⅰ)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并回答是否有99%的把握認(rèn)為月收入以5500元為分界點對“樓市限購政策”的態(tài)度有差異?
月收入不低于55百元的人數(shù) 月收入低于55百元的人數(shù) 合計
贊成 a= b=
不贊成 c= d=
合計
(Ⅱ)若從月收入在[55,65)的被調(diào)查對象中隨機選取兩人進行調(diào)查,求至少有一人不贊成“樓市限購政策”的概率.
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)
參考值表:
P(k2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•馬鞍山二模)已知橢圓C1
x2
m+2
+
y2
n
=1
與雙曲線C2
x2
m
-
y2
n
=1
共焦點,則橢圓C1的離心率e的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•馬鞍山二模)己知在銳角△ABC中,角A,B,C所對的邊分別為a、b、c,向量
m
=(a2+b2-c2,ab),
n
=(sinC,-cosC),且
m
n

(I)求角C的大。
(II)當(dāng)c=1時,求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•馬鞍山二模)設(shè)x1,x2是關(guān)于x的方程x2+mx+
1+m2
=0的兩個不相等的實數(shù)根,那么過兩點A(x1x12),B(x2,x22)的直線與圓x2+y2=2的位置關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊答案