【題目】如圖,一個(gè)湖的邊界是圓心為的圓,湖的一側(cè)有一條直線型公路,湖上有橋(是圓的直徑).規(guī)劃在公路上選兩個(gè)點(diǎn),并修建兩段直線型道路.規(guī)劃要求:線段上的所有點(diǎn)到點(diǎn)的距離均不小于圓的半徑.已知點(diǎn)到直線的距離分別為和(為垂足),測(cè)得,,(單位:百米).
(1)若道路與橋垂直,求道路的長(zhǎng);
(2)在規(guī)劃要求下,和中能否有一個(gè)點(diǎn)選在處?并說(shuō)明理由.
【答案】(1)15(百米);(2)不能,理由見(jiàn)解析
【解析】
(1)作,可求得,從而得到,由可求得結(jié)果;
(2)①若在處,線段上的點(diǎn)(除)到點(diǎn)的距離均小于圓的半徑,不符合規(guī)劃要求;②若在處,可得到;利用余弦定理可驗(yàn)證出為銳角,可知上存在點(diǎn)到點(diǎn)的距離小于圓的半徑,不符合規(guī)劃要求;由此可得結(jié)論.
(1)過(guò)點(diǎn)作,垂足為
由已知條件得:四邊形為矩形 ,
道路的長(zhǎng)為(百米)
(2)不能,理由如下:
①若在處,由(1)可得在圓上
則線段上的點(diǎn)(除)到點(diǎn)的距離均小于圓的半徑
選在處不滿足規(guī)劃要求
②若在處,連接
由(1)知:
為銳角 線段上存在點(diǎn)到點(diǎn)的距離小于圓的半徑
選在處也不滿足規(guī)劃要求
綜上所述:和均不能選在處
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,分別為,的中點(diǎn),,如圖1.以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)的位置,如圖2.
如圖1 如圖2
(1)證明:平面平面;
(2)若平面平面,求直線與平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確的是( )
A.經(jīng)過(guò)任意三點(diǎn)有且只有一個(gè)平面.
B.過(guò)點(diǎn)有且僅有一條直線與異面直線垂直.
C.一條直線與一個(gè)平面平行,它就和這個(gè)平面內(nèi)的任意一條直線平行.
D.面與平面相交,則公共點(diǎn)個(gè)數(shù)為有限個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海洋藍(lán)洞是地球罕見(jiàn)的自然地理現(xiàn)象,被喻為“地球留給人類保留宇宙秘密的最后遺產(chǎn)”,我國(guó)擁有世界上最深的海洋藍(lán)洞,若要測(cè)量如圖所示的藍(lán)洞的口徑,兩點(diǎn)間的距離,現(xiàn)在珊瑚群島上取兩點(diǎn),,測(cè)得,,,,則,兩點(diǎn)的距離為___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示, 是海面上一條南北方向的海防警戒線,在 上點(diǎn) 處有一個(gè)水聲監(jiān)測(cè)點(diǎn),另兩個(gè)監(jiān)測(cè)點(diǎn) 分別在 的正東方向 處和 處.某時(shí)刻,監(jiān)測(cè)點(diǎn) 收到發(fā)自目標(biāo) 的一個(gè)聲波, 后監(jiān)測(cè)點(diǎn) 后監(jiān)測(cè)點(diǎn) 相繼收到這一信號(hào),在當(dāng)時(shí)的氣象條件下,聲波在水中的傳播速度是 .
(1)設(shè) 到 的距離為 ,用 分別表示 到 的距離,并求 的值;
(2)求目標(biāo) 的海防警戒線 的距離(精確到 ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù)在點(diǎn)處與軸相切
(1)求的值,并求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),方程在區(qū)間內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(2)對(duì)于區(qū)間上的任意不相等的實(shí)數(shù)、,都有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的圖像在出的切線方程;
(2)判斷函數(shù)的單調(diào)性;
(3)證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com