【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,已知直線的極坐標方程為, .

(Ⅰ)若直線與曲線交于不同的兩點, ,當時,求的值;

(Ⅱ)當時,求曲線關于直線對稱的曲線方程.

【答案】(Ⅰ).(Ⅱ).

【解析】試題分析:將直線的參數(shù)方程與曲線的極坐標方程都化為直角坐標方程,結合圓的幾何性質,根據(jù)點到直線的距離公式求解;(結合直線與圓的位置關系,求出圓心關于直線的對稱點即可得結果.

試題解析:(Ⅰ)消去參數(shù),得曲線的普通方程為,圓心,半徑為.

代入直線的極坐標方程得.

因為,所以圓心到直線的距離

所以由,解得.

(Ⅱ)當時,直線的方程為,

圓心到直線的距離為 ,即圓與直線相切,此時切點為

則圓心關于切點的對稱點為,此即為所求圓的圓心,

所以曲線關于直線對稱的曲線方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校舉行“青少年禁毒”知識競賽網(wǎng)上答題,高二年級共有500名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了100名學生的成績進行統(tǒng)計.請你解答下列問題:

(1)根據(jù)下面的頻率分布表和頻率分布直方圖,求出a+d和b+c的值;
(2)若成績不低于90分的學生就能獲獎,問所有參賽學生中獲獎的學生約為多少人?

分組

頻數(shù)

頻率

[60,70)

10

0.1

[70,80)

22

0.22

[80,90)

a

0.38

[90,100]

30

c

合計

100

d

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設實數(shù)x,y滿足 ,則z=|x﹣1|+|y+2|的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個單位有職工80人,其中業(yè)務人員56人,管理人員8人,服務人員16人,為了解職工的某種情況,決定采取分層抽樣的方法。抽取一個容量為10的樣本,每個管理人員被抽到的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠的A、B、C三個不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如表所示.質檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進行檢測.

車間

A

B

C

數(shù)量

50

150

100

(1)求這6件樣品中來自A、B、C各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機抽取2件進行進一步檢測,求這2件商品來自相同車間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)),且的導數(shù)為.

(Ⅰ)若是定義域內的增函數(shù),求實數(shù)的取值范圍;

(Ⅱ)若方程有3個不同的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一盒中裝有各色球12只,其中5個紅球,4個黑球,2個白球,1個綠球;從中隨機取出1球.求:
(1)取出的1球是紅球或黑球的概率;
(2)取出的1球是紅球或黑球或白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,AB=2,C是⊙O上一點,且AC=BC,PC與⊙O所在的平面成45°角,E是PC中點.F為PB中點.
(1)求證:EF∥面ABC;
(2)求證:EF⊥面PAC;
(3)求三棱錐B﹣PAC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需耗一級籽棉2噸、二級籽棉1噸;生產(chǎn)乙種棉紗1噸需耗一級籽棉1噸,二級籽棉2噸.每1噸甲種棉紗的利潤為900元,每1噸乙種棉紗的利潤為600元.工廠在生產(chǎn)這兩種棉紗的計劃中,要求消耗一級籽棉不超過250噸,二級籽棉不超過300噸.問甲、乙兩種棉紗應各生產(chǎn)多少噸,能使利潤總額最大?并求出利潤總額的最大值.

查看答案和解析>>

同步練習冊答案