【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是: (t是參數(shù)).
(1)若直線l與曲線C相交于A、B兩點(diǎn),且|AB|= ,試求實(shí)數(shù)m值.
(2)設(shè)M(x,y)為曲線C上任意一點(diǎn),求x+2y的取值范圍.

【答案】
(1)

解:∵ρ=4cosθ,∴ρ2=4ρcosθ,∴曲線C的直角坐標(biāo)方程為:x2+y2﹣4x=0,即(x﹣2)2+y2=4.

,∴直線l的直角坐標(biāo)方程為:y=x﹣m.即x﹣y﹣m=0.

∵|AB|= ,∴圓心到直線l的距離(弦心距)d=

,解得m=1或m=3


(2)

解:曲線C的參數(shù)方程為: (θ為參數(shù)),

∵M(jìn)(x,y)為曲線C上任意一點(diǎn),∴x+2y=2+2cosθ+4sinθ=2+2 sin(θ+φ).

∴x+2y的取值范圍是[2﹣2 ,2+2 ]


【解析】(1)求出圓的圓心和半徑,根據(jù)垂徑定理列出方程解出m;(2)求出曲線C的參數(shù)方程,將參數(shù)方程代入x+2y得到關(guān)于參數(shù)得三角函數(shù),使用三角函數(shù)的性質(zhì)得出最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把位于直線y=k與直線y=l(k、l均為常數(shù),且k<l)之間的點(diǎn)所組成區(qū)域(含直線y=k,直線y=l)稱為“k⊕l型帶狀區(qū)域”,設(shè)f(x)為二次函數(shù),三點(diǎn)(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型帶狀區(qū)域”,如果點(diǎn)(t,t+1)位于“﹣1⊕3型帶狀區(qū)域”,那么,函數(shù)y=|f(t)|的最大值為(
A.
B.3
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)n∈N* , n≥3,k∈N*
(1)求值: ①kCnk﹣nCn1k1;
(k≥2);
(2)化簡(jiǎn):12Cn0+22Cn1+32Cn2+…+(k+1)2Cnk+…+(n+1)2Cnn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生寒假期間學(xué)習(xí)情況,學(xué)校對(duì)某班男、女學(xué)生學(xué)習(xí)時(shí)間進(jìn)行調(diào)查,學(xué)習(xí)時(shí)間按整小時(shí)統(tǒng)計(jì),調(diào)查結(jié)果繪成折線圖如下:
(Ⅰ)已知該校有400名學(xué)生,試估計(jì)全校學(xué)生中,每天學(xué)習(xí)不足4小時(shí)的人數(shù);
(Ⅱ)若從學(xué)習(xí)時(shí)間不少于4小時(shí)的學(xué)生中選取4人,設(shè)選到的男生人數(shù)為X,求隨機(jī)變量X的分布列;
(Ⅲ)試比較男生學(xué)習(xí)時(shí)間的方差 與女生學(xué)習(xí)時(shí)間方差 的大。ㄖ恍鑼懗鼋Y(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC 中,角A、B、C所對(duì)的邊分別為a、b、c,且cosA=
①求 的值.
②若 ,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)南宋著名數(shù)學(xué)家秦九韶發(fā)現(xiàn)了從三角形三邊求三角形面積的“三斜公式”,設(shè)△ABC三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,面積為S,則“三斜求積”公式為 .若a2sinC=4sinA,(a+c)2=12+b2 , 則用“三斜求積”公式求得△ABC的面積為(
A.
B.2
C.3
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]已知曲線C的極坐標(biāo)方程是ρ=2cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線L的參數(shù)方程是 (t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程和直線L的普通方程;
(2)設(shè)點(diǎn)P(m,0),若直線L與曲線C交于A,B兩點(diǎn),且|PA||PB|=1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線E:y2=2px(p>0)與圓O:x2+y2=8相交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為2.過劣弧AB上動(dòng)點(diǎn)P(x0 , y0)作圓O的切線交拋物線E于C,D兩點(diǎn),分別以C,D為切點(diǎn)作拋物線E的切線l1 , l2 , l1與l2相交于點(diǎn)M.
(Ⅰ)求p的值;
(Ⅱ)求動(dòng)點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)F為拋物線C:y2=4x的焦點(diǎn),過點(diǎn)P(﹣1,0)的直線l交拋物線C于兩點(diǎn)A,B,點(diǎn)Q為線段AB的中點(diǎn),若|FQ|=2,則直線l的斜率等于

查看答案和解析>>

同步練習(xí)冊(cè)答案