精英家教網 > 高中數學 > 題目詳情

已知函數
(1)若函數上是增函數,求實數的取值范圍;
(2)若函數上的最小值為3,求實數的值.

(1),(2)

解析試題分析:(1)利用導數研究函數單調性,上是增函數就是≥0在上恒成立,恒成立問題一般利用變量分離轉化為最值問題,即上恒成立.令,則.∵上是增函數,∴.∴≤1.所以實數的取值范圍為.(2)利用導數研究函數最值,實際還是研究函數單調性. ①若,,解得(舍去).②若,當時,,當時,,解得(舍去).③若,則,,所以
解:(1)∵,∴.      2分
上是增函數,
≥0在上恒成立,即上恒成立.        4分
,則
上是增函數,∴
≤1.所以實數的取值范圍為.           7分
(2)由(1)得,
①若,則,即上恒成立,此時上是增函數.
所以,解得(舍去).       10分
②若,令,得

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數f(x)=xlnx-x2.
(1)當a=1時,函數y=f(x)有幾個極值點?
(2)是否存在實數a,使函數f(x)=xlnx-x2有兩個極值?若存在,求實數a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ln x,g(x)=x2-bx(b為常數).
(1)函數f(x)的圖像在點(1,f(1))處的切線與g(x)的圖像相切,求實數b的值;
(2)設h(x)=f(x)+g(x),若函數h(x)在定義域上存在單調減區(qū)間,求實數b的取值范圍;
(3)若b>1,對于區(qū)間[1,2]上的任意兩個不相等的實數x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)(2011•陜西)如圖,從點P1(0,0)做x軸的垂線交曲線y=ex于點Q1(0,1),曲線在Q1點處的切線與x軸交于點P2,再從P2做x軸的垂線交曲線于點Q2,依次重復上述過程得到一系列點:P1,Q1;P2,Q2…;Pn,Qn,記Pk點的坐標為(xk,0)(k=1,2,…,n).

(Ⅰ)試求xk與xk﹣1的關系(2≤k≤n);
(Ⅱ)求|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數函數處取得極值1.
(1)求實數b,c的值;
(2)求在區(qū)間[-2,2]上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)若,求曲線在點處的切線方程;
(2)若 求函數的單調區(qū)間;
(3)若不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,
(1)若的極大值為,求實數的值;
(2)若對任意,都有恒成立,求實數的取值范圍;
(3)若函數f(x)滿足:在定義域內存在實數x0,使f(x0+k)= f(x0)+ f(k)(k為常數),則稱“f(x)關于k可線性分解”. 設,若關于實數a 可線性分解,求取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,其中為自然對數的底數.
(1)求函數的單調區(qū)間;
(2)記曲線在點(其中)處的切線為軸、軸所圍成的三角形面積為,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若函數y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數y=f(x)的極值點.已知a,b是實數,1和-1是函數f(x)=x3+ax2+bx的兩個極值點.
(1)求a和b的值;
(2)設函數g(x)的導函數g′(x)=f(x)+2,求g(x)的極值點.

查看答案和解析>>

同步練習冊答案