如圖,直線平面,垂足為,直線是平面的一條斜線,斜足為,其中,過點的動直線交平面于點,,則下列說法正確的是___________.

①若,則動點B的軌跡是一個圓;
②若,則動點B的軌跡是一條直線;
③若,則動點B的軌跡是拋物線;
,則動點B的軌跡是橢圓;
,則動點B的軌跡是雙曲線.
②③.

試題分析:由①重合,動直線形成一個平面與平面M的平面,動點的軌跡不存在,故不正確;由②,則,所以動直線形成一個平面垂直,平面與平面M交于一條直線,則是動點的軌跡,故正確;由③,則動直線形成一個以為軸線的圓錐,圓錐母線與軸線的夾角是,由,則圓錐的一條母線與平面M平行,所以動點的軌跡看成一個平行于圓錐母線的平面截圓錐所成的圖形是拋物線,則動點B的軌跡是拋物線,故正確;由④時,動點的軌跡看成一個與圓錐母線成一個角度的平面截圓錐所成的圖形,此時的軌跡是雙曲線;由⑤動點的軌跡看成一個與圓錐母線成一個角度的平面截圓錐所成的圖形,此時的軌跡是橢圓.故最終正確的是②③.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖在正三棱錐P-ABC中,側(cè)棱長為3,底面邊長為2,E為BC的中點,

(1)求證:BC⊥PA
(2)求點C到平面PAB的距離

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐P-ABCD的底面為直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.

(I) 試判斷直線CD與平面PAD是否垂直,并簡述理由;
(II)求證:平面PAB⊥平面ABCD;
(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖1,在直角梯形中,,,. 把沿對角線折起到的位置,如圖2所示,使得點在平面上的正投影恰好落在線段上,連接,點分別為線段的中點.

(1)求證:平面平面;
(2)求直線與平面所成角的正弦值;
(3)在棱上是否存在一點,使得到點四點的距離相等?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖:四邊形是梯形,,,三角形是等邊三角形,且平面 平面,,,

(1)求證:平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四面體中,分別是、的中點,

(Ⅰ)求證:平面;
(Ⅱ)求二面角的正切值;
(Ⅲ)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱中,

(Ⅰ)求證:平面;
(Ⅱ)若的中點,求與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱中,,,為的中點.

(1)求證:∥平面
(2)求證:平面;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(如圖,在四棱錐P﹣ABCD中,底面是邊長為2的菱形,∠BAD=60°,對角線AC與BD相交于點O,PO為四棱錐P﹣ABCD的高,且,E、F分別是BC、AP的中點.

(1)求證:EF∥平面PCD;
(2)求三棱錐F﹣PCD的體積.

查看答案和解析>>

同步練習冊答案