設函數(shù)f(x)=xm+ax的導數(shù)f′(x)=2x+3,則數(shù)列{
1
f(n)+2
}(n∈N*)的前n項和是(  )
分析:由f(x)=xm+ax的導數(shù)f'(x)=mxm-1+a=2x+3,先求出f(x)=x2+3x,設an=
1
f(n)+2
=
1
n2+3n+2
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2
,由此能求出數(shù)列{
1
f(n)+2
}(n∈N*)的前n項和.
解答:解:∵f(x)=xm+ax的導數(shù)f'(x)=mxm-1+a=2x+3,
∴m=2,a=3,
∴f(x)=x2+3x,
設an=
1
f(n)+2
,
∴則an=
1
f(n)+2
=
1
n2+3n+2
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

∴數(shù)列{
1
f(n)+2
}(n∈N*)的前n項和
Sn=a1+a2+…+an
=(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n+1
-
1
n+2
)

=
1
2
-
1
n+2

=
n
2(n+2)

故選B.
點評:本題考查數(shù)列的性質和應用,是基礎題.解題時要認真審題,注意導數(shù)的性質和應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=xm+ax的導函數(shù)f′(x)=2x+1,則
2
1
f(-x)dx的值等于( 。
A、
5
6
B、
1
2
C、
2
3
D、
1
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=xm+ax的導數(shù)為f′(x)=2x+1,則數(shù)列{
1f(n)
}(n∈N*)
的前n項和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=xm+ax的導函數(shù)f′(x)=2x+1,則數(shù)列{
1
f(n)
}(n∈N*)的前n項和是( 。
A、
n
n+1
B、
n+2
n+1
C、
n
n-1
D、
n+1
n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=xm+ax的導函數(shù)f′(x)=2x+1,則
2
1
f(-x)dx
的值等于
 

查看答案和解析>>

同步練習冊答案