已知橢圓C:,直線恒過的定點F為橢圓的一個焦點,且橢圓上的點到焦點F的最大距離為3,

(1)求橢圓C的方程;

(2)若直線MN為垂直于x軸的動弦,且M、N均在橢圓C上,定點T(4,0),直線MF與直線NT交于點S

①求證:點S恒在橢圓C上;

②求△MST面積的最大值。

解:(1) 直線可化為

(4分)

(2)①設直線MN的方程為

②直線MS過點F(1,0),設方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C的兩焦點為F1(-1,0),F(xiàn)2(1,0),并且經(jīng)過點M(1 , 
32
)

(1)求橢圓C的方程;
(2)已知圓O:x2+y2=1,直線l:mx+ny=1,證明當點P(m,n)在橢圓C上運動時,直線l與圓O恒相交;并求直線l被圓O所截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知橢圓C:數(shù)學公式,直線l:y=mx+1,若對任意的m∈R,直線l與橢圓C恒有公共點,則實數(shù)b的取值范圍是


  1. A.
    [1,4)
  2. B.
    [1,+∞)
  3. C.
    [1,4)∪(4,+∞)
  4. D.
    (4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年重慶一中高三(下)5月月考數(shù)學試卷(文科)(解析版) 題型:解答題

已知橢圓C:,直線(m+3)x+(1-2m)y-m-3=0(m∈R)恒過的定點F為橢圓的一個焦點,且橢圓上的點到焦點F的最大距離為3,
(1)求橢圓C的方程;
(2)若直線MN為垂直于x軸的動弦,且M、N均在橢圓C上,定點T(4,0),直線MF與直線NT交于點S.求證:
①點S恒在橢圓C上;
②求△MST面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年東北育才、大連育明高三第二次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:選擇題

已知橢圓C:,直線l:y=mx+1,若對任意的m∈R,直線l與橢圓C恒有公共點,則實數(shù)b的取值范圍是( )
A.[1,4)
B.[1,+∞)
C.[1,4)∪(4,+∞)
D.(4,+∞)

查看答案和解析>>

同步練習冊答案