北京時間2011年3月11日13時46分,在日本東海岸附近海域發(fā)生里氏9級地震后引發(fā)海嘯,導致福島第一核電站受損嚴重.3月12日以來,福島第一核電站的4臺機組(編號分別為1、2、3、4)的核反應堆相繼發(fā)生爆炸,放射性物質(zhì)泄漏到外部.某評估機構預估日本在十年內(nèi)修復該核電站第1、2、3、4號機組的概率分別為
1
2
,
1
2
,
1
2
,
3
5
.假設這4臺機組能否被修復相互獨立.
(1)求十年內(nèi)這4臺機組中恰有1臺機組被修復的概率;
(2)求十年內(nèi)這4臺機組中至少有兩臺機組被修復的概率.
分析:(Ⅰ)根據(jù)題意,記十年內(nèi)這4臺機組中恰有1臺機組被修復為事件A,則十年中第i臺機組被修復的事件為Ai,{i=1、2、3、4),由相互獨立事件概率的乘法公式計算可得只有第1臺、第2臺、第3臺、第4臺機組被修復的概率,進而由互斥事件概率的加法公式,將求得的4個事件的概率相加即可得答案;
(Ⅱ)分析可得,事件“4臺機組中至少有兩臺機組被修復”的對立事件為“4臺機組全部沒有修復或恰有1臺修復”,記十年內(nèi)這4臺機組中全部沒有修復為事件B,由相互獨立事件概率的乘法公式計算可得其概率,由(Ⅰ)的結論,結合對立事件概率的性質(zhì),計算可得答案.
解答:解:(Ⅰ)記十年內(nèi)這4臺機組中恰有1臺機組被修復為事件A,則十年中第i臺機組被修復的事件為Ai,{i=1、2、3、4),
只有第1臺被修復的概率P1=P(A1
.
A2
.
A3
.
A4
)=(
1
2
3×
2
5
,
只有第2臺被修復的概率P2=P(
.
A1
•A2
.
A3
.
A4
)=(
1
2
3×
2
5
,
只有第3臺被修復的概率P3=P(
.
A1
.
A2
•A3
.
A4
)=(
1
2
3×
2
5
,
只有第4臺被修復的概率P4=P(
.
A1
.
A2
.
A3
•A4)=(
1
2
3×
3
5
,
則恰有1臺機組被修復的概率P(A)=P1+P2+P3+P4=(
1
2
3×
2
5
+(
1
2
3×
2
5
+(
1
2
3×
2
5
+(
1
2
3×
3
5
=
9
40

(Ⅱ)事件“4臺機組中至少有兩臺機組被修復”的對立事件為“4臺機組全部沒有修復或恰有1臺修復”,
記十年內(nèi)這4臺機組中全部沒有修復為事件B,
則P(B)=(1-
1
2
)×(1-
1
2
)×(1-
1
2
)×(1-
3
5
)=
2
40
,
由(Ⅰ)可得,4臺機組中恰有1臺機組被修復的概率P(A)=
9
40
,
而4臺機組中全部沒有修復的概率這4臺機組中至少有兩臺機組被修復的概率P=1-
9
40
-
2
40
=
29
40
點評:本題考查互斥事件的概率計算,解(Ⅱ)時,可以利用對立事件的性質(zhì),先求“4臺機組中至少有兩臺機組被修復”的對立事件的概率.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

北京時間2011年3月11日13時46分,在日本東海岸附近海域發(fā)生里氏9級地震后引發(fā)海嘯,導致福島第一核電站受損嚴重.3月12日以來,福島第一核電站的4臺機組(編號分別為1、2、3、4)的核反應堆相繼發(fā)生爆炸,放射性物質(zhì)泄漏到外部.某評估機構預估日本在十年內(nèi)修復該核電站第1、2、3、4號機組的概率分別為
1
2
,
1
2
,
1
2
,
3
5
.假設這4臺機組能否被修復相互獨立.
(1)求十年內(nèi)這4臺機組中恰有1臺機組被修復的概率;
(2)求十年內(nèi)這4臺機組中被修復的機組的總數(shù)為隨機變量ξ,求隨機變量ξ的分布列和數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

北京時間2011年3月11日13時46分,日本時間14時46分,日本發(fā)生里氏9.0級地震,震中位于宮城縣以東太平洋海域,震源深度20公里,東京有強烈震感.在災后第一時間,重慶紅十字會就組織3名醫(yī)生和4名護士奔赴災區(qū),全部安排到受災較嚴重的3所學校救助受傷師生,要求每校至少安排1名醫(yī)生和1名護士,不同的安排方法共有( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

北京時間2011年3月11日13時46分,日本時間14時46分,日本發(fā)生里氏9.0級地震,震中位于宮城縣以東太平洋海域,震源深度20公里,東京有強烈震感.在災后第一時間,重慶紅十字會就組織3名醫(yī)生和4名護士奔赴災區(qū),全部安排到受災較嚴重的3所學校救助受傷師生,要求每校至少安排1名醫(yī)生和1名護士,不同的安排方法共有( 。
A.216種B.72種C.324種D.504種

查看答案和解析>>

科目:高中數(shù)學 來源:期末題 題型:解答題

北京時間2011年3月11日13時46分,在日本東海岸附近海域發(fā)生里氏9級地震后引發(fā)海嘯,導致福島第一核電站受損嚴重.3月12日以來,福島第一核電站的4臺機組(編號分別為1、2、3、4)的核反應堆相繼發(fā)生爆炸,放射性物質(zhì)泄漏到外部.某評估機構預估日本在十年內(nèi)修復該核電站第1、2、3、4號機組的概率分別為.假設這4臺機組能否被修復相互獨立.
(1)求十年內(nèi)這4臺機組中恰有1臺機組被修復的概率;
(2)求十年內(nèi)這4臺機組中被修復的機組的總數(shù)為隨機變量ξ,求隨機變量?的分布列和數(shù)學期望Eξ.

查看答案和解析>>

同步練習冊答案