【題目】函數(shù)y=loga(x+2)﹣1(a>0,a≠1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上,其中m>0,n>0,則 + 的最小值為(
A.3+2
B.3+2
C.7
D.11

【答案】A
【解析】解:函數(shù)y=loga(x+2)﹣1(a>0,a≠1)的圖象恒過(guò)定點(diǎn)A(﹣1,﹣1), ∵點(diǎn)A在直線mx+ny+1=0上,其中m>0,n>0,∴﹣m﹣n+1=0,即m+n=1.
+ =(m+n) =3+ + ≥3+2 =3+2 ,當(dāng)且僅當(dāng)n= m=2﹣ 時(shí)取等號(hào).
故選:A.
函數(shù)y=loga(x+2)﹣1(a>0,a≠1)的圖象恒過(guò)定點(diǎn)A(﹣1,﹣1),可得m+n=1.于是 + =(m+n) =3+ + ,再利用基本不等式的性質(zhì)即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為 , .等 差數(shù)列中, ,且公差

求數(shù)列的通項(xiàng)公式;

(Ⅱ)是否存在正整數(shù),使得?.若存在,求出的最小值;若 不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年3月9日至15日,谷歌人工智能系統(tǒng)“阿爾法”迎戰(zhàn)圍棋冠軍李世石,最終結(jié)果“阿爾法”以總比分4比1戰(zhàn)勝李世石.許多人認(rèn)為這場(chǎng)比賽是人類的勝利,也有許多人持反對(duì)意見,有網(wǎng)友為此進(jìn)行了調(diào)查,在參加調(diào)查的2548名男性中有1560名持反對(duì)意見,2452名女性中有1200名持反對(duì)意見,在運(yùn)用這些數(shù)據(jù)說(shuō)明“性別”對(duì)判斷“人機(jī)大戰(zhàn)是人類的勝利”是否有關(guān)系時(shí),應(yīng)采用的統(tǒng)計(jì)方法是(
A.莖葉圖
B.分層抽樣
C.獨(dú)立性檢驗(yàn)
D.回歸直線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2x﹣2x , 若對(duì)任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,則實(shí)數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于x的不等式ax2﹣(a+1)x+1<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合M={x|0≤x≤2},N={y|0≤y≤2},給出如下四個(gè)圖形,其中能表示從集合M到集合N的函數(shù)關(guān)系的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是我國(guó)2009年至2015年生活垃圾無(wú)害化處理量(單位:億噸)的折線圖.
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;
(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2017年我國(guó)生活垃圾無(wú)害化處理量.
參考數(shù)據(jù): yi=9.32, tiyi=40.17, =0.55, ≈2.646.
參考公式:相關(guān)系數(shù)r= =
回歸方程 = + t中斜率和截距的最小二乘估計(jì)公式分別為: = , = t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】PM2.5是指懸浮在空氣中的空氣動(dòng)力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,根據(jù)現(xiàn)行國(guó)家標(biāo)準(zhǔn)GB3095﹣2012,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級(jí);在35微克/立方米~75毫克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo).從某自然保護(hù)區(qū)2012年全年每天的PM2.5監(jiān)測(cè)值數(shù)據(jù)中隨機(jī)地抽取10天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值頻數(shù)如表所示:

PM2.5日均值
(微克/立方米)

[25,35]

(35,45]

(45,55]

(55,65]

(65,75]

(75,85]

頻數(shù)

3

1

1

1

1

3


(1)從這10天的PM2.5日均值監(jiān)測(cè)數(shù)據(jù)中,隨機(jī)抽取3天,求恰有1天空氣質(zhì)量達(dá)到一級(jí)的概率;
(2)從這10天的數(shù)據(jù)中任取3天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測(cè)數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列;
(3)以這10天的PM2.5日均值來(lái)估計(jì)一年的空氣質(zhì)量狀況,則一年(按366天算)中平均有多少天的空氣質(zhì)量達(dá)到一級(jí)或二級(jí).(精確到整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: + =1(a>b>0),短軸長(zhǎng)2,兩焦點(diǎn)分別為F1 , F2 , 過(guò)F1的直線交橢圓C于M,N兩點(diǎn),且△F2MN的周長(zhǎng)為8.

(1)求橢圓C的方程;
(2)直線l與橢圓C相交于A,B點(diǎn),點(diǎn)D為橢圓C上一點(diǎn),四邊形AOBD為矩形,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案