求f(x)=x3-15x2-33x+6的單調(diào)區(qū)間.
分析:對函數(shù)y=x3-2x2-4x+2進(jìn)行求導(dǎo),然后令導(dǎo)函數(shù)大于0求出單調(diào)增區(qū)間,導(dǎo)函數(shù)小于0求出單調(diào)減區(qū)間即可.
解答:解:f'(x)=3x2-30x-33=3(x+1)(x-11)
令f'(x)=3x2-30x-33=3(x+1)(x-11)>0
解得:x>11或x<-1
令f'(x)=3x2-30x-33=3(x+1)(x-11)<0
解得:-1<x<11
故求f(x)=x3-15x2-33x+6的單調(diào)增區(qū)間為(-∞,-1),(11,+∞);
單調(diào)減區(qū)間為(-1,11).
點評:本題主要考查導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3+ax2+bx(x>0)的圖象與直線y=4相切于M(1,4).
(Ⅰ)求f(x)=x3+ax2+bx在區(qū)間(0,4]上的最大值與最小值;
(Ⅱ)設(shè)存在兩個不等正數(shù)s,t(s<t),當(dāng)x∈[s,t]時,函數(shù)f(x)=x3+ax2+bx的值域是[ks,kt],求正數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為G的函數(shù)f(x),如果同時滿足下列兩個條件:①f(x)在G內(nèi)是單調(diào)函數(shù);②存在區(qū)間[a,b]⊆G,使f(x)在[a,b]上的值域亦為[a,b],那么就稱f(x)為好函數(shù).
(Ⅰ)判斷函數(shù)f(x)=
lnx
ex
+1在(0,+∞)上是否為好函數(shù)?并說明理由;
(Ⅱ)求好函數(shù)f(x)=-x3+1符合條件的一個區(qū)間[a,b];
(Ⅲ)若函數(shù)f(x)=m+
x+2
是好函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2-3x
(1)若f(x)在區(qū)間[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(2)若x=-
13
是f(x)的一個極值點,求f(x)在[1,a]上的最大值;
(3)在(2)的條件下,是否存在實數(shù)b,使得函數(shù)g(x)=bx的圖象與函數(shù)f(x)的圖象恰有3個交點,若存在,請求出實數(shù)b的取值范圍;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3-ax2-3x
(1)若f(x)在[2,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點,求f(x)在[1,a]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求f(x)=x3-3x2+2在區(qū)間[-1,4]上的最值.(要列表求)

查看答案和解析>>

同步練習(xí)冊答案