精英家教網 > 高中數學 > 題目詳情
直線是圓的兩條切線,若的交點為,則的夾角的正切值等于        .

試題分析:顯然兩切線,斜率都存在.設圓的切線方程為,則圓心到直線的距離等于半徑,,解得由夾角公式得的夾角的正切值:
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,△ABO三邊上的點C、D、E都在⊙O上,已知AB∥DE,AC=CB.

(1)求證:直線AB是⊙O的切線;
(2)若AD=2,且tan∠ACD=,求⊙O的半徑r的長.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知點P(a,0),若拋物線y2=4x上任一點Q都滿足|PQ|≥|a|,則a的取值范圍是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若直線ax+by=1過點M(cos α,sin α),則(  )
A.a2+b2≥1B.a2+b2≤1
C.≤1D.≥1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知直線l:2x+y+2=0及圓C:x2+y2=2y.
(1)求垂直于直線l且與圓C相切的直線l′的方程;
(2)過直線l上的動點P作圓C的一條切線,設切點為T,求|PT|的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設點,若在圓上存在點,使得,則的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖所示,AD,AE,BC分別與圓O切于點D,E,F,延長AF與圓O交于另一點G.給出下列三個結論:

①AD+AE=AB+BC+CA;
②AF·AG=AD·AE;
③△AFB∽△ADG.
其中正確結論的序號是(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

[2014·珠海聯(lián)考]已知兩點A(-2,0),B(0,2),點C是圓x2+y2-2x=0上任意一點,則△ABC面積的最小值是________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

圓:和圓:交于A、B兩點,則AB的垂直平分線的方程是(     ).
A.    B.   C.     D.

查看答案和解析>>

同步練習冊答案