(本小題滿分10分)選修4—4:坐標系與參數方程選講
在直角坐標系中,直線l的參數方程為:在以O為極點,以x 軸的正半軸為極軸的極坐標系中,圓C的極坐標方程為:
(Ⅰ)將直線l的參數方程化為普通方程,圓C的極坐標方程化為直角坐標方程;
(Ⅱ)判斷直線與圓C的位置關系.
科目:高中數學 來源: 題型:解答題
在極坐標系內,已知曲線的方程為,以極點為原點,極軸方向為正半軸方向,利用相同單位長度建立平面直角坐標系,曲線的參數方程為(為參數).
(1) 求曲線的直角坐標方程以及曲線的普通方程;
(2) 設點為曲線上的動點,過點作曲線的兩條切線,求這兩條切線所成角余弦值的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(1) 在直角坐標系xOy中,曲線的參數方程為為參數),M為上的動點,P點滿足,點P的軌跡為曲線.已知在以O為極點,x軸的正半軸為極軸的極坐標系中,射線與的異于極點的交點為A,與的異于極點的交點為B,求|AB|.
(2) 某旅游景點給游人準備了這樣一個游戲,他制作了“迷尼游戲板”:在一塊傾斜放置的矩形膠合板上釘著一個形如“等腰三角形”的八行鐵釘,釘子之間留有空隙作為通道,自上而下第1行2個鐵釘之間有1個空隙,第2行3個鐵釘之間有2個空隙,…,第8行9個鐵釘之間有8個空隙(如圖所示).東方莊家的游戲規(guī)則是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付給莊家2元.若小球到達①②③④號球槽,分別獎4元、2元、0元、-2元.(一個玻璃球的滾動方式:通過第1行的空隙向下滾動,小球碰到第二行居中的鐵釘后以相等的概率滾入第2行的左空隙或右空隙.以后小球按類似方式繼續(xù)往下滾動,落入第8行的某一個空隙后,最后掉入迷尼板下方的相應球槽內).恰逢周末,某同學看了一個小時,留心數了數,有80人次玩.試用你學過的知識分析,這一小時內游戲莊家是贏是賠? 通過計算,你得到什么啟示?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,曲線的參數方程為(,為參數),在以為極點,軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經過極點的圓.已知曲線上的點對應的參數,射線與曲線交于點.
(I)求曲線,的方程;
(II)若點,在曲線上,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2個小題作答,滿分14分.如果多做,則按所做的前兩題記分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)(本小題滿分7分)選修4—2:矩陣與變換
在平面直角坐標系中,把矩陣確定的壓縮變換與矩陣確定的旋轉變換進行復合,得到復合變換.
(Ⅰ)求復合變換的坐標變換公式;
(Ⅱ)求圓在復合變換的作用下所得曲線的方程.
(2)(本小題滿分7分)選修4-4:坐標系與參數方程
在平面直角坐標系中,直線的參數方程為(為參數),、分別為直線與軸、軸的交點,線段的中點為.
(Ⅰ)求直線的直角坐標方程;
(Ⅱ)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求點的極坐標和直線的極坐標方程.
(3)(本小題滿分7分)選修4—5:不等式選講
已知不等式的解集與關于的不等式的解集相等.
(Ⅰ)求實數,的值;
(Ⅱ)求函數的最大值,以及取得最大值時的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分10分)選修4-4:坐標系與參數方程
已知極坐標的極點在平面直角坐標系的原點處,極軸與軸的正半軸重合,且長度單位相同.圓的參數方程為(為參數),點的極坐標為. (1)化圓的參數方程為極坐標方程;
(2)若點是圓上的任意一點, 求,兩點間距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分10分)在直角坐標平面內,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是,直線的參數方程是(為參數)。
(1) 求極點在直線上的射影點的極坐標;
(2) 若、分別為曲線、直線上的動點,求的最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題10分)選修4—4:坐標系與參數方程
在直角坐標系中,以原點為極點,軸的正半軸為極軸建坐標系,已知曲線,已知過點的直線的參數方程為:直線與曲線分別交于
(1)寫出曲線和直線的普通方程;
(2)若成等比數列,求的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com