|
|
正四棱錐的頂點都在同一球面上,若該棱錐的高為4,底面邊長為2,則該球的表面積是
|
[ ] |
A. |
|
B. |
16π
|
C. |
9π
|
D. |
|
|
|
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:人教B版(新課標) 必修5
題型:
|
|
已知數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,且an與1的等差中項等于Sn與1的等比中項.
(1)求a1的值及數(shù)列{an}的通項公式;
(2)設bn=21+an+(-1)n-1×2n+1λ,若數(shù)列{bn}是單調遞增數(shù)列,求實數(shù)λ的取值范圍.
|
|
|
查看答案和解析>>
科目:高中數(shù)學
來源:課標綜合版 專題復習
題型:
|
|
“x<0”是“ln(x+1)<0”的
|
[ ] |
A. |
充分不必要條件
|
B. |
必要不充分條件
|
C. |
充分必要條件
|
D. |
既不充分也不必要條件
|
|
|
查看答案和解析>>
科目:高中數(shù)學
來源:課標綜合版 專題復習
題型:
|
|
如圖,已知兩條拋物線E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),過原點O的兩條直線l1和l2,l1與E1,E2分別交于A1,A2兩點,l2與E1,E2分別交于B1,B2兩點.
(1)證明:A1B1∥A2B2;
(2)過原點O作直線(異于l1,l2)與E1,E2分別交于C1,C2兩點.記?A1B1C1與的△A2B2C2面積分別為S1與S2,求的值.
|
|
|
查看答案和解析>>
科目:高中數(shù)學
來源:課標綜合版 專題復習
題型:
|
|
函數(shù)y=ln()(x>-1)的反函數(shù)是
|
[ ] |
A. |
y=(1-ex)3(x>-1)
|
B. |
y=(ex-1)3(x>-1)
|
C. |
y=(1-ex)3(x∈R)
|
D. |
y=(ex-1)3(x∈R)
|
|
|
查看答案和解析>>
科目:高中數(shù)學
來源:課標綜合版 專題復習
題型:
|
|
設x,y滿足約束條件,則z=x+4y的最大值為________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學
來源:課標綜合版 專題復習
題型:
|
|
已知拋物線C:y2=2px(p>0)的焦點為F,直線y=4與y軸的交點為P,與C的交點為Q,且.
(1)求拋物線C的方程;
(2)過F的直線l與C相交于A,B兩點,若AB的垂直平分線與C相交于M,N兩點,且A,M,B,N四點在同一個圓上,求直線l的方程.
|
|
|
查看答案和解析>>
科目:高中數(shù)學
來源:課標綜合版 專題復習
題型:
|
|
如圖,在平面直角坐標系 xOy中,F1、F2分別是橢圓的左、右焦點,頂點B的坐標為(0,b),連結BF2交橢圓于點A,過點A作x軸的垂線交橢圓于另一點C,連結F1C.
(1) 若點C的坐標為(,),且BF2=,求橢圓的方程;
(2) 若F1C⊥AB,求橢圓離心率e的值.
|
|
|
查看答案和解析>>
科目:高中數(shù)學
來源:課標綜合版 專題復習
題型:
|
|
某企業(yè)有甲、乙兩個研發(fā)小組,他們研發(fā)新產品成功的概率分別為和.現(xiàn)安排甲組研發(fā)新產品A,乙組研發(fā)新產品B.設甲、乙兩組的研發(fā)相互獨立.
(Ⅰ)求至少有一種新產品研發(fā)成功的概率;
(Ⅱ)若新產品A研發(fā)成功,預計企業(yè)可獲利潤120萬元;若新產品B研發(fā)成功,預計企業(yè)可獲利潤100萬元.求該企業(yè)可獲利潤的分布列和數(shù)學期望.
|
|
|
查看答案和解析>>