精英家教網 > 高中數學 > 題目詳情
某中學為了了解學生的課外閱讀情況,隨機調查了50名學生,得到他們在某一天各自課外閱讀所用時間的數據,結果用下圖的條形圖表示.根據條形圖可得這50名學生這一天平均每人的課外閱讀時間為________.
0.97小時
一天平均每人的課外閱讀時間應為一天的總閱讀時間與學生的比,即
=0.97(小時).
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

為了解某地區(qū)學生和包括老師、家長在內的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調查,就是否“取消英語聽力”的問題,調查統(tǒng)計的結果如下表:

態(tài)度

 

應該取消
應該保留
無所謂
在校學生
2100人
120人
y
社會人士
600人
x
z
已知在全體樣本中隨機抽取1人,抽到持“應該保留”態(tài)度的人的概率為0.05.
(1)現用分層抽樣的方法在所有參與調查的人中抽取360人進行問卷訪談,問應在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“應該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進行深入交流,求第一組中在校學生人數ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

為了了解某年段1000名學生的百米成績情況,隨機抽取了若干學生的百米成績,成績全部介于13秒與18秒之間,將成績按如下方式分成五組:第一組[13,14);第二組[14,15);……;第五組[17,18].按上述分組方法得到的頻率分布直方圖如圖3所示,已知圖中從左到右的前3個組的頻率之比為3∶8∶19,且第二組的頻數為8.

(1)將頻率當作概率,請估計該年段學生中百米成績在[16,17)內的人數;
(2)求調查中隨機抽取了多少個學生的百米成績;
(3)若從第一、五組中隨機取出兩個成績,求這兩個成績的差的絕對值大于1秒的概率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某高校在2013年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如圖所示.
組號
分組
頻數
頻率
第1組

5
0.050
第2組


0.350
第3組

30

第4組

20
0.200
第5組

10
0.100
合計
100
1.00
 
(1)請先求出頻率分布表中①、②位置相應的數據,再在答題卷上完成下列頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試?
(3)在(2)的前提下,學校決定在6名學生中隨機抽取2名學生接受A考官進行面試,求:第4組至少有一名學生被考官A面試的概率?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某校高三4班有50名學生進行了一場投籃測試,其中男生30人,女生20人.為了了解其投籃成績,甲、乙兩人分別都對全班的學生進行編號(1~50號),并以不同的方法進行數據抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃考試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數據:
編號
性別
投籃成績
2

90
7

60
12

75
17

80
22

83
27

85
32

75
37

80
42

70
47

60
甲抽取的樣本數據
編號
性別
投籃成績
1

95
8

85
10

85
20

70
23

70
28

80
33

60
35

65
43

70
48

60
乙抽取的樣本數據
(Ⅰ)觀察抽取的樣本數據,若從男同學中抽取兩名,求兩名男同學中恰有一名非優(yōu)秀的概率.
(Ⅱ)請你根據抽取的樣本數據完成下列2×2列聯表,判斷是否有95%以上的把握認為投籃成績和性別有關?
 
優(yōu)秀
非優(yōu)秀
合計

 
 
 

 
 
 
合計
 
 
10
(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(Ⅱ)的結論判斷哪種抽樣方法更優(yōu)?說明理由.
下面的臨界值表供參考:

0.15
0.10
0.05
0.010
0.005
0.001

2.072
2.706
3.841
6.635
7.879
10.828
(參考公式:,其中

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

計算下面事件A與事件B的2×2列聯表的χ2統(tǒng)計量值,得χ2≈________,從而得出結論________.
 
B

總計
A
39
157
196

29
167
196
總計
68
324
392

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內每個技工加工的合格零件數如下表:
 
1號
2號
3號
4號
5號
甲組
4
5
x
9
10
乙組
5
6
7
y
9
(1)已知兩組技工在單位時間內加工的合格零件平均數為7,分別求出甲、乙兩組技工在單位時間內加工的合格零件的方差,并由此分析兩組技工的加工水平;
(2)質檢部門從該車間甲、乙兩組中各隨機抽取一名技工,對其加工的零件進行檢測,若2人加工的合格零件個數之和超過14,則稱該車間“質量合格”,求該車間“質量合格”的概率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖是甲、乙兩名籃球運動員2013年賽季每場比賽得分的莖葉圖,則甲、乙兩人比賽得分的中位數之和為        .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

下圖是2013年某市舉行的名師評選活動,七位評委為某位教師打出的分數的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分,所剩數據的平均數和方差分別為(    )
7
9
 
 
 
 
8
4
4
6
4
7
9
3
 
 
 
 
A. 84,4.84
B. 84,1.6 
C. 85,1.6 
D. 85,4

查看答案和解析>>

同步練習冊答案