【題目】如圖1,已知矩形ABCD中, ,點(diǎn)E是邊BC上的點(diǎn),且 ,DE與AC相交于點(diǎn)H.現(xiàn)將△ACD沿AC折起,如圖2,點(diǎn)D的位置記為D',此時(shí) .
(Ⅰ)求證:D'H⊥平面ABC;
(Ⅱ)求二面角H﹣D'E﹣A的余弦值.
【答案】證明:(Ⅰ)在矩形ABCD中,因?yàn)? ,
所以 ,則∠EDC=∠ACB.
又因?yàn)? ,所以 .
則 ,所以AC⊥DE,即D'H⊥AC.
又△CHE∽△AHD,且 ,所以 , .則 ,所以D'H⊥HE.
而直線AC與HE是平面ABC內(nèi)的兩條相交直線,所以D'H⊥平面ABC.
(Ⅱ)解:由(Ⅰ)知,HA,HE,HD'相互垂直,所以以H為坐標(biāo)原點(diǎn),HA,HE,HD'分別為x,y,z軸建立如圖所示的空間直角坐標(biāo)系H﹣xyz,
則 , ,
所以 , .
設(shè)平面AED'的法向量為 =(x,y,z),則 .取 ,則 ,
所以 =( , , ).
又平面HD'E的一個(gè)法向量為 =(1,0,0),設(shè)二面角H﹣D'E﹣A的平面角為θ,則cosθ= = ,所以二面角H﹣D'E﹣A的余弦值為 .
【解析】(Ⅰ)推導(dǎo)出AC⊥DE,DH′⊥AC,D′H⊥HE,從而D′H⊥平面ABC;(Ⅱ)由(Ⅰ)知,HA,HE,HD'相互垂直,所以以H為坐標(biāo)原點(diǎn),HA,HE,HD'分別為x,y,z軸建立如圖所示的空間直角坐標(biāo)系H﹣xyz,利用向量方法,求二面角H﹣D'E﹣A的余弦值.
【考點(diǎn)精析】利用直線與平面垂直的判定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)F1和F2為雙曲線 (a>0,b>0)的兩個(gè)焦點(diǎn),若F1 , F2 , P(0,2b)是正三角形的三個(gè)頂點(diǎn),則雙曲線的漸近線方程是( )
A.y=± x
B.y=± x
C.y=± x
D.y=± x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)F1、F2是雙曲線 =1(a>0,b>0)的左、右焦點(diǎn),P是雙曲線右支上一點(diǎn),滿足( + ) =0(O為坐標(biāo)原點(diǎn)),且3| |=4| |,則雙曲線的離心率為( )
A.2
B.
C.
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用如圖所示的幾何體中,四邊形BB1C1C是矩形,BB1⊥平面ABC,A1B1∥AB,AB=2A1B1 , E是AC的中點(diǎn).
(1)求證:A1E∥平面BB1C1C;
(2)若AC=BC,AB=2BB1 , 求二面角A﹣BA1﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù) 向右平移 個(gè)單位后得到y(tǒng)=g(x)的圖象,若函數(shù)y=g(x)在區(qū)間[a,b](b>a)上的值域是 ,則b﹣a的最小值m和最大值M分別為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論中,正確的有( )
①不存在實(shí)數(shù)k,使得方程xlnx﹣ x2+k=0有兩個(gè)不等實(shí)根;
②已知△ABC中,a,b,c分別為角A,B,C的對(duì)邊,且a2+b2=2c2 , 則角C的最大值為 ;
③函數(shù)y= ln 與y=lntan 是同一函數(shù);
④在橢圓 + =1(a>b>0),左右頂點(diǎn)分別為A,B,若P為橢圓上任意一點(diǎn)(不同于A,B),則直線PA與直線PB斜率之積為定值.
A.①④
B.①③
C.①②
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為 (t 為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=asinθ.
(Ⅰ)若a=2,求圓C的直角坐標(biāo)方程與直線l的普通方程;
(Ⅱ)設(shè)直線l截圓C的弦長(zhǎng)等于圓C的半徑長(zhǎng)的 倍,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)為A(0,1),B(1,0),C(0,﹣2),O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M滿足| |=1,則| 的最大值是( )
A.
B.
C. ﹣1
D. ﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(I)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求橢圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)M(x,y)為橢圓C上任意一點(diǎn),求x+2y的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com