(本小題共13分)
已知某個幾何體的三視圖如圖(主視圖的弧線是半圓),根據(jù)圖中標出的數(shù)據(jù),
(Ⅰ)求這個組合體的表面積;
(Ⅱ)若組合體的底部幾何體記為
,其中
為正方形.
(i)求證:
;
(ii)設點
為棱
上
一點,求直線
與平面
所成角的正弦值的取值范圍.
(1)
(2)(i)略(ii)
(Ⅰ)
=
.………4分
(Ⅱ)(i)∵長方體
∴
∵
∴
又∵
是邊長為8的正方形
∴
∵
∴
. …………………
………9分
(ii)建立直角坐標系
,則
,
∴
∵
∴
為平面
的法向量
∵
∴
. …………………………13分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
一個幾何體的三視圖如圖所示,則這個幾何體的體積等于
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,已知正三棱柱
的底面邊
長是
,
是側棱
的中點,直線
與側面
所成的角為
.
(1)求此正三棱柱的側棱長;
(2)求二面角
的正切值;
(3)求點
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知圓錐的表面積為
,且它的側面展開圖是一個半圓,求這個圓錐的底面直徑。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若一個正三棱柱的三視圖如下圖所示,則這個正三棱柱的高和底面邊長分別為( )
A.2,2 | B.2,2 | C.4,2 | D.2,4 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設A,B兩地位于北緯
的緯線上,且兩地的經度差為
,若地球的半徑為
千米,且時速為20千米的輪船從A地到B地最少需要
小時,則
為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在三棱錐
P—ABC中,
AB⊥
BC,
AB =" BC" = kPA,點
E、D分別是
AC、PC的中點,
EP⊥底面
ABC.
(1) 求證:
ED∥平面
PAB;
(2) 求
直線
AB與平面
PAC所成的角;
(3) 當
k取何值時,
E在平面
PBC內的射影恰好為△
PBC的重心?
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
一個正方體的所有頂點都在同一球面上,若球的體積是
,則正方體的表面
積是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
平面
內有一個正六邊形ABCDEF,它的中心是O,邊長是2cm.OS⊥
,OS=4cm.
求:點S到這個正六邊形頂
點和邊的距離.
查看答案和解析>>