【題目】已知函數(shù)在區(qū)間上有最大值4和最小值1.設.

(1)求的值;

(2)若不等式上有解,求實數(shù)的取值范圍;

(3)若有三個不同的實數(shù)解,求實數(shù)的取值范圍.

【答案】(1)(2)(3)

【解析】試題分析:(1)由函數(shù), 在區(qū)間上是增函數(shù),故,由此解得的值;(2)不等式化為,故有求出的最小值,從而求得的取值范圍;(3)方程,,原方程等價于,構(gòu)造函數(shù),通過數(shù)形結(jié)合與等價轉(zhuǎn)化的思想可求得的范圍.

試題解析:(1),

因為,所以在區(qū)間上是增函數(shù),故,解得,

(2)由已知可得

所以可化為,

化為,令,則,因,故,

,因為,故,所以得取值范圍是.

(3)原方程可化為

,則, 有兩個不同的實數(shù)解,

其中,或.

,則① 或

解不等組①,得,而不等式組②無實數(shù)解,所以實數(shù)的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)6cos2sinωx3(ω>0)在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點,B、C為圖象與x軸的交點,且△ABC為正三角形.

(1)ω的值及函數(shù)f(x)的值域;

(2)f(x0),且x0∈(,),求f(x01)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+(x﹣1)ex
(1)當a=﹣ 時,求f(x)在點P(1,f(1))處的切線方程;
(2)討論f(x)的單調(diào)性;
(3)當﹣ <a<﹣ 時,f(x)是否存在極值?若存在,求所有極值的和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】運行如圖所示的程序框圖,則輸出結(jié)果為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的三個內(nèi)角A,B,C所對應的邊分別為a,b,c,且滿足bcosC+ c=a.
(1)求△ABC的內(nèi)角B的大;
(2)若△ABC的面積S= b2 , 試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知矩形BB1C1C所在平面與底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1 , AB⊥AN,CB=BA=AN= BB1

(1)求證:BN⊥平面C1B1N;
(2)求二面角C﹣C1N﹣B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx在x=﹣ 與x=1處都取得極值.
(1)求a,b的值;
(2)求曲線y=f(x)在x=2處的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點.
(1)求證:PD⊥平面ABE;
(2)若F為AB中點, ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為-

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種汽車購買時費用為16.9萬元,每年應交付保險費、汽油費共0.9萬元,汽車的維修保養(yǎng)費為:第一年0.2萬元,第二年0.4萬元,第三年0.6萬元,……依等差數(shù)列逐年遞增.

(1)求該車使用了3年的總費用(包括購車費用)為多少萬元?

(2)設該車使用年的總費用(包括購車費用)為),試寫出的表達式;

(3)求這種汽車使用多少年報廢最合算(即該車使用多少年平均費用最少).

查看答案和解析>>

同步練習冊答案