已知雙曲線=1的焦點為F1、F2,點M在雙曲線上且MF1⊥x軸,則F1到直線F2M的距離為

[  ]

A.

B.

C.

D.

答案:C
解析:

不妨設(shè)點F1(-3,0),容易計算得出MF1,MF2=MF1,再由同一個三角形的面積相等,從而求得F1到直線F2M的距離為


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:設(shè)計選修數(shù)學-1-1蘇教版 蘇教版 題型:013

已知雙曲線=1的焦點為F1、F2,點M在雙曲線上且MF1⊥x軸,則F1到直線F2M的距離為

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源:設(shè)計選修數(shù)學2-1蘇教版 蘇教版 題型:013

已知雙曲線=1的焦點為F1、F2,點M在雙曲線上且MF1⊥x軸,則F1到直線F2M的距離為

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

6.已知雙曲線=1的焦點為F1、F2,點M在雙曲線上且MF1⊥x軸,則F1到直線F2M的距離為

(A)             (B)        

(C)                (D)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線=1的焦點為F1、F2,點M在雙曲線上且MF1⊥x軸,則F1到直線F2M的距離為

(A)           (B)        (C)           (D)

查看答案和解析>>

同步練習冊答案