(本小題滿分13分)
用長為18m的鋼條圍成一個長方體形狀的框架,要求長方體的長與寬之比為2:1,問:該長方體的長、寬、高各為多少時,其體積最大?最大體積是多少?
解:設(shè)長方體的寬為xm,則長為2xm,
(m)… 2分
故長方體的體積   ………4分
從而,令,解得(舍去)或
當(dāng)時,,是增函數(shù);
當(dāng)時,,是減函數(shù)……10分
故在取得極大值,并且這個極大值就是的最大值!12分
從而最大體積為=3立方米,此時長方體的長為2m、寬為1m,高為1.5 m!13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù)
(1)若,點(diǎn)P為曲線上的一個動點(diǎn),求以點(diǎn)P為切點(diǎn)的切線斜率取最小值時的切線方程;
(2)若函數(shù)上為單調(diào)增函數(shù),試求滿足條件的最大整數(shù)a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
設(shè)定義在R上的函數(shù)f(x)=a0x4a1x3a2x2a3xa4(a0,a1a2,a3,a4∈R)當(dāng)x=-1時,f(x)取得極大值,且函數(shù)yf(x+1)的圖象關(guān)于點(diǎn)(-1,0)對稱.
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)試在函數(shù)yf(x)的圖象上求兩點(diǎn),使以這兩點(diǎn)為切點(diǎn)的切線互相垂直,且切點(diǎn)的橫坐標(biāo)都在區(qū)間[-,]上;
(Ⅲ)設(shè)xn=,ym=(mn∈N?),求證:|f(xn)-f(ym)|<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)處的切線的斜率是 (   )   
A.0B.1C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知在區(qū)間上是單調(diào)增函數(shù),則的最大值為       (   )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題


求曲線所圍成圖形的面積             。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)在曲線上,為曲線在點(diǎn)處的切線的傾斜角,則的取值范圍是
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案