奇函數(shù)f(x)的定義域為(-∞,0)∪(0,+∞),值域為R,當且僅當x>1時,f(x)>0.
關(guān)于f(x)有如下命題:①f(-1)=0;②方程f(x)=0有無窮解;③f(x)有最小值,但無最大值;④f(x)的圖象關(guān)于原點對稱,且f(x)是周期函數(shù).其中正確命題的序號是
①②
①②
分析:根據(jù)題意,分析易得當0<x≤1時,有f(x)≤0,進而用分析f(x)<0,可得與已知條件的矛盾,易得f(x)=0,即可得在區(qū)間(0,1]上,均有f(x)=0,又由奇函數(shù)的對稱性可得其在區(qū)間[-1,0)上,也有均有f(x)=0,綜合可得得當x∈[-1,0)∪(0,1],均有f(x)=0;進而分析4個命題,易得①②正誤,由函數(shù)最值的意義可得③的正誤,由周期函數(shù)的定義可得④的正誤;綜合可得答案.
解答:解:根據(jù)題意,當且僅當x>1時,f(x)>0,當0<x≤1時,有f(x)≤0,
若f(x)<0,則在區(qū)間-1<-x<0上,有f(-x)=-f(x)>0,與題意不符,故f(x)=0,即在區(qū)間(0,1]上,均有f(x)=0,
又由f(x)是奇函數(shù),則在區(qū)間[-1,0)上,也有均有f(x)=0,
綜合可得當x∈[-1,0)∪(0,1],均有f(x)=0,
對于①f(-1)=0,正確;
對于②方程f(x)=0當x∈[-1,0)∪(0,1]均成立,則方程f(x)=0有無窮解,正確;
對于③由題意無法判斷f(x)有最小值、最大值情況,錯誤;
對于④f(x)的圖象關(guān)于原點對稱,但f(x)不是周期函數(shù),錯誤;
即命題①②正確;
故答案為①②.
點評:本題考查函數(shù)奇偶性的性質(zhì),解題的關(guān)鍵在于把握題干中“當且僅當x>1時,f(x)>0”這一條件,進而對x在其他范圍進行分類討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

9、奇函數(shù)f(x)是定義在R上的增函數(shù),若實數(shù)x,y滿足不等式f(x2-6x)+f(y2-8y+24)<0,則x2+y2的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)是定義在(-2,2)上的減函數(shù),若f(m-1)+f(2m-1)>0,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x)的圖象關(guān)于直線x=1對稱,并且當x∈(0,1]時,f(x)=x2+1則f(462)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

奇函數(shù)f(x)是定義在[-1,1]上的增函數(shù),且f(x-1)+f(1-2x)<0,則實數(shù)x的取值范圍為
(0,1]
(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)是定義在(-1,1)上的增函數(shù),若f(m-1)+f(2m-1)≤0,則m的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案