設(shè)f(x)=
1,x≥0
0,x<0
,則函數(shù)f(x)的值域是( 。
A、{0,1}
B、[0,1]
C、{(0,1)}
D、(0,1)
分析:由題意知函數(shù)f(x)的值域有兩個元素0和1,選出即可.
解答:解:∵f(x)=
1,(x≥0)
0,(x<0)
;
當x≥0時,y=f(x)=1;
當x<0時,y=f(x)=0;
∴f(x)的值域是{y|y=0,或1};
故選:A.
點評:本題考查了分段函數(shù)的值域問題,是基本題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
1+ax
1-ax
a>0且a≠1),g(x)是f(x)的反函數(shù).
(Ⅰ)設(shè)關(guān)于x的方程求loga
t
(x2-1)(7-x)
=g(x)
在區(qū)間[2,6]上有實數(shù)解,求t的取值范圍;
(Ⅱ)當a=e,e為自然對數(shù)的底數(shù))時,證明:
n
k=2
g(k)>
2-n-n2
2n(n+1)

(Ⅲ)當0<a≤
1
2
時,試比較|
n
k=1
f(k)-n
|與4的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)有如下定義:
定義(1):設(shè)f″(x)是函數(shù)y=f(x)的導數(shù)f′(x)的導數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”;
定義(2):設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(x0,f(x0))對稱.
己知f(x)=x3-3x2+ax+2在x=-1處取得極大值.請回答下列問題:
(1)當x∈[0,4]時,求f(x)的最小值和最大值;
(2)求函數(shù)f(x)的“拐點”A的坐標,并檢驗函數(shù)f(x)的圖象是否關(guān)于“拐點”A對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
1當x為有理數(shù)時
0當x為無理數(shù)時
,對所有實數(shù)x均滿足xf(x)≤g(x),那么函數(shù)g(x)可以是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
1+x
1-x
,記f1(x)=f(x),fk+1(x)=f(fk(x)),k=1,2,…,則f2010(x)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=1-2
x
,g(x)=
1-x
+2
x
,則f(x)+g(x)=
1+
1-x
,x∈{x|0≤x≤1}
1+
1-x
,x∈{x|0≤x≤1}

查看答案和解析>>

同步練習冊答案