【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4, ,AB=2CD=8.
(1)設(shè)M是PC上的一點(diǎn),證明:平面MBD⊥平面PAD;
(2)當(dāng)M點(diǎn)位于線段PC什么位置時(shí),PA∥平面MBD?
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.
【解析】試題分析:
(1)計(jì)算得 ,又平面 平面平面 平面 平面;(2)當(dāng) 點(diǎn)位于線段靠近 點(diǎn)的三等分點(diǎn)處時(shí), 平面 .先證四邊形 是梯形.再證 平面.
試題解析:(1)在△ABD中,
∵AD=4,,AB=8,∴AD2+BD2=AB2.
∴AD⊥BD.
又∵平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,BD平面ABCD,
∴BD⊥平面PAD.又BD平面MBD,
∴平面MBD⊥平面PAD.
(2)當(dāng)M點(diǎn)位于線段PC靠近C點(diǎn)的三等分點(diǎn)處時(shí),PA∥平面MBD.
證明如下:連接AC,交BD于點(diǎn)N,連接MN.
∵AB∥DC,所以四邊形ABCD是梯形.
∵AB=2CD,∴CN:NA=1:2.
又∵CM:MP=1:2,
∴CN:NA=CM:MP,∴PA∥MN.
∵M(jìn)N平面MBD,∴PA∥平面MBD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)水輪的半徑為4m,水輪圓心O距離水面2m,已知水輪每分鐘轉(zhuǎn)動(dòng)5圈,如果當(dāng)水輪上點(diǎn)P從水中浮現(xiàn)時(shí)(圖中點(diǎn)p0)開(kāi)始計(jì)算時(shí)間.
(1)將點(diǎn)p距離水面的高度z(m)表示為時(shí)間t(s)的函數(shù);
(2)點(diǎn)p第一次到達(dá)最高點(diǎn)大約需要多少時(shí)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在區(qū)間上的最大值和最小值;
(2)若在區(qū)間上,函數(shù)的圖像恒在直線下方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2=9,點(diǎn)A(-5,0),直線l:x-2y=0.
(1)求與圓C相切,且與直線l垂直的直線方程;
(2)在直線OA上(O為坐標(biāo)原點(diǎn)),存在定點(diǎn)B(不同于點(diǎn)A),滿足:對(duì)于圓C上任一點(diǎn)P,都有為一常數(shù),試求所有滿足條件的點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三個(gè)班共有學(xué)生100人,為調(diào)查他們的體育鍛煉情況,通過(guò)分層抽樣獲取了部分學(xué)生一周的鍛煉時(shí)間,數(shù)據(jù)如下表(單位:小時(shí)).
班 | 6 | 7 | ||
班 | 6 | 7 | 8 | |
班 | 5 | 6 | 7 | 8 |
(1)試估計(jì)班學(xué)生人數(shù);
(2)從班和班抽出來(lái)的學(xué)生中各選一名,記班選出的學(xué)生為甲,班選出的學(xué)生為乙,求甲的鍛煉時(shí)間大于乙的鍛煉時(shí)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)對(duì)于曲線上的不同兩點(diǎn),如果存在曲線上的點(diǎn),且使得曲線在點(diǎn)處的切線,則稱為弦的伴隨直線,特別地,當(dāng)時(shí),又稱為的—伴隨直線.
①求證:曲線的任意一條弦均有伴隨直線,并且伴隨直線是唯一的;
②是否存在曲線,使得曲線的任意一條弦均有—伴隨直線?若存在,給出一條這樣的曲線,并證明你的結(jié)論;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一(1)班有男同學(xué)45名,女同學(xué)15名,老師按照分層抽樣的方法抽取4人組建了一個(gè)課外興趣小組.
(I)求課外興趣小組中男、女同學(xué)的人數(shù);
(II)經(jīng)過(guò)一個(gè)月的學(xué)習(xí)、討論,這個(gè)興趣小組決定選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是從小組里選出一名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再?gòu)男〗M內(nèi)剩下的同學(xué)中選出一名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;
(III)在(II)的條件下,第一次做實(shí)驗(yàn)的同學(xué)A得到的實(shí)驗(yàn)數(shù)據(jù)為38,40,41,42,44,第二次做實(shí)驗(yàn)的同學(xué)B得到的實(shí)驗(yàn)數(shù)據(jù)為39,40,40,42,44,請(qǐng)問(wèn)哪位同學(xué)的實(shí)驗(yàn)更穩(wěn)定?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(x+1)-f(x)=-2x+1,且f(2)=15.
(1)求函數(shù)f(x)的解析式;
(2) 令g(x)=(2-2m)x-f(x).
① 若函數(shù)g(x)在x∈[0,2]上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
② 求函數(shù)g(x)在x∈[0,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(ax2-x+1)(a>0,a≠1).
(1) 若a=,求函數(shù)f(x)的值域.
(2) 當(dāng)f(x)在區(qū)間上為增函數(shù)時(shí),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com