試題分析:由
,又由
即在直線上,又在曲線上,可得k=1,a=0,b=2,則
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
(I)求
的單調(diào)區(qū)間;
(II)若存在
使
求實數(shù)a的范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設
是函數(shù)
的一個極值點.
(1)求
與
的關系式(用
表示
),并求
的單調(diào)遞增區(qū)間;
(2)設
,若存在
使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(1)若函數(shù)
在定義域內(nèi)為增函數(shù),求實數(shù)
的取值范圍;
(2)設
,若函數(shù)
存在兩個零點
,且實數(shù)
滿足
,問:函數(shù)
在
處的切線能否平行于
軸?若能,求出該切線方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設函數(shù)
。
(1)如果
,求函數(shù)
的單調(diào)遞減區(qū)間;
(2)若函數(shù)
在區(qū)間
上單調(diào)遞增,求實數(shù)
的取值范圍;
(3)證明:當
時,
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
,其中
,
.
(Ⅰ)若
的最小值為
,試判斷函數(shù)
的零點個數(shù),并說明理由;
(Ⅱ)若函數(shù)
的極小值大于零,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設
和
是函數(shù)
的兩個極值點,其中
,
.
(1)求
的取值范圍;
(2)若
,求
的最大值.注:e是自然對數(shù)的底.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
在
上是增函數(shù),
(1)求實數(shù)
的取值集合
;
(2)當
取值集合
中的最小值時,定義數(shù)列
;滿足
且
,
,求數(shù)列
的通項公式;
(3)若
,數(shù)列
的前
項和為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
從邊長為10cm×16cm的矩形紙板的四角截去四個相同的小正方形,作成一個無蓋的盒子,則盒子容積的最大值為________
.
查看答案和解析>>