若對(duì)于正整數(shù)k、g(k)表示k的最大奇數(shù)因數(shù),例如g(3)=3,g(20)=5,并且g(2m)=g(m)(m∈N*),設(shè)Sn=g(1)+g(2)+g(3)+…g(2n)
(Ⅰ)求S1、S2、S3;
(Ⅱ)求Sn
(III)設(shè)bn=
1
Sn-1
,求證數(shù)列{bn}的前n頂和Tn
3
2
分析:(Ⅰ)由對(duì)于正整數(shù)k、g(k)表示k的最大奇數(shù)因數(shù),g(2m)=g(m)(m∈N*),S1=g(1)+g(2),S2=g(1)+g(2)+g(3)+g(4),S3=g(1)+g(2)+g(3)+g(4)+g(5)+g(6)+g(7)+g(8),能求出S1,S2,S3
(Ⅱ)由g(2m)=g(m),n∈N+,知Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n-1)+g(2n)=[g(1)+g(3)+g(5)+…+g(2n-1)]+[g(2)+g(4)+…+g(2n)]=[1+3+5+…+(2n-1)]+[g(2×1)+g(2×2)+…+g(2•2n-1)],得Sn-Sn-1=4n-1,由此能求出Sn
(Ⅲ)由bn=
1
Sn-1
=
3
4n-1
=
3
(2n)2-1
=
3
(2n-1)(2n+1)
=
3
2
(
1
2n-1
-
1
2n+1
)
,用裂項(xiàng)求和法能證明數(shù)列{bn}的前n頂和Tn
3
2
解答:解:(Ⅰ)S1=g(1)+g(2)=1+1=2(1分)
S2=g(1)+g(2)+g(3)+g(4)=1+1+3+1=6(2分)
S3=g(1)+g(2)+g(3)+g(4)+g(5)+g(6)+g(7)+g(8)
=1+1+3+1+5+3+7+1=22…(3分)
(Ⅱ)∵g(2m)=g(m),n∈N+…(4分)
Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n-1)+g(2n)
=[g(1)+g(3)+g(5)+…+g(2n-1)]+[g(2)+g(4)+…+g(2n)]
=[1+3+5+…+(2n-1)]+[g(2×1)+g(2×2)+…+g(2•2n-1)]…(5分)
=
(1+2n-1)•2n-1
2
+[g(1)+g(2)+…g(2n-1)]
…(6分)
=4n-1+Sn-1…(7分)
Sn-Sn-1=4n-1
∴Sn=(Sn-Sn-1)+(Sn-1-Sn-2)+…+(S2-S1)+S1…(8分)
=4n-1+4n-2+…+42+4+2
=
4(4n-1-1)
4-1
+2=
1
3
4n+
2
3
…(9分)
(Ⅲ)bn=
1
Sn-1
=
3
4n-1
=
3
(2n)2-1
=
3
(2n-1)(2n+1)
=
3
2
(
1
2n-1
-
1
2n+1
)
,…(10分)Tn=
3
2
(
1
21-1
-
1
2+1
)+
3
2
(
1
22-1
-
1
22+1
)+
3
2
(
1
23-1
-
1
23+1
)+…+
3
2
(
1
2n-1
-
1
2n+1
)

=
3
2
[1-
1
2+1
+
1
22-1
-
1
22+1
+
1
23-1
+…+
1
2n-1-1
-
1
2n-1+1
+
1
2n-1
-
1
2n+1
]

=
3
2
[1-(
1
3
-
1
3
)-(
1
22+1
-
1
23-1
)-…-(
1
2n-1+1
-
1
2n-1
)-
1
2n+1
]
…(11分)
∴當(dāng)n=1時(shí),T1=b1=1<
3
2
成立  …(12分)
當(dāng)n≥2時(shí),
1
2n-1+1
-
1
2n-1
=
2n-1-2n-1-1
(2n-1+1)(2n-1)
=
2n-1-2
(2n-1+1)(2n-1)
≥0
…(13分)
Tn=
3
2
[1-(
1
2+1
-
1
22-1
)-(
1
22+1
-
1
23-1
)-…(
1
2n-1+1
-
1
2n-1
)-
1
2n+1
3
2
•1=
3
2

Tn
3
2
.…(14分)
點(diǎn)評(píng):本題考查數(shù)列與不等式的綜合運(yùn)用,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.綜合性強(qiáng),難度大,有一定的探索性,對(duì)數(shù)學(xué)思維能力要求較高,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若對(duì)于正整數(shù)k、g(k)表示k的最大奇數(shù)因數(shù),例如g(3)=3,g(20)=5,并且g(2m)=g(m)(m∈N*),設(shè)Sn=g(1)+g(2)+g(3)+…g(2n)
(Ⅰ)求S1、S2、S3;
(Ⅱ)求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對(duì)于正整數(shù)k,g(k)表示k的最大奇數(shù)因數(shù),例如g(3)=3,g(10)=5.設(shè)Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n).
(Ⅰ)求g(6),g(20)的值;
(Ⅱ)求3S1-2,3S2-2,3S3-2的值;并由此猜想{Sn}的通項(xiàng)公式(不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對(duì)于正整數(shù)k,g(k)表示k的最大奇數(shù)因數(shù),例如g(3)=3,g(10)=5;設(shè)Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n),則數(shù)列{Sn}的通項(xiàng)公式是
Sn=
1
3
(4n+2)
Sn=
1
3
(4n+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東城區(qū)一模)若對(duì)于正整數(shù)k,g(k)表示k的最大奇數(shù)因數(shù),例如g(3)=3,g(10)=5.設(shè)Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n)
(Ⅰ)求g(6),g(20)的值;
(Ⅱ)求S1,S2,S3的值;
(Ⅲ)求數(shù)列{Sn}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案