若雙曲線的一條漸近線方程為,則此雙曲線的離心率為      

試題分析:雙曲線的焦點(diǎn)在x軸上,由其一漸近線方程為,即,。
點(diǎn)評(píng):簡(jiǎn)單題,雙曲線的幾何性質(zhì),主要涉及a,b,c,e的關(guān)系。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

Δ兩個(gè)頂點(diǎn)的坐標(biāo)分別是,邊所在直線的斜率之積等于,求頂點(diǎn)的軌跡方程,并畫(huà)出草圖。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

以雙曲線的離心率為半徑,右焦點(diǎn)為圓心的圓與雙曲線的漸近線相切,則的值為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線上有一條長(zhǎng)為2的動(dòng)弦AB,則AB中點(diǎn)M到x軸的最短距離為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的方程為,點(diǎn)P的坐標(biāo)為(-a,b).
(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)的坐標(biāo);
(2)設(shè)直線交橢圓、兩點(diǎn),交直線于點(diǎn).若,證明:的中點(diǎn);
(3)對(duì)于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個(gè)交點(diǎn)、滿足,寫(xiě)出求作點(diǎn)、的步驟,并求出使、存在的θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的焦點(diǎn)坐標(biāo)是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C:(a>b>0)的右焦點(diǎn)為F(1,0),離心率為,P為左頂點(diǎn)。
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)F的直線交橢圓C于A,B兩點(diǎn),若△PAB的面積為,求直線AB的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若拋物線上一點(diǎn)到其焦點(diǎn)的距離等于4,則     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果過(guò)曲線上點(diǎn)處的切線平行于直線,那么點(diǎn)的坐標(biāo)為
A.B.C.D.(

查看答案和解析>>

同步練習(xí)冊(cè)答案