如圖,邊長為2的正方形ABCD中,
(1)E、F是AB、BC的中點(diǎn),將△AED、△DCF分別沿DE、DF折起,使AC兩點(diǎn)重合于點(diǎn)A′,求證:A′D⊥EF;
(2)若BE=BF=λBC,求λ的范圍并求三棱錐A′-EFD的體積.
分析:(1)由題設(shè)條件知:A'D⊥A'E,A'D⊥A'F,A'E∩A'F=A',由此能夠證明A'D⊥面A'EF,從而得到A'D⊥EF.
 (2)取EF中點(diǎn)G,連接A'G,則A'G⊥EF,由BE=BF=λBC=2λ,∠EBF=90°,知EF=2
2
λ
,A'E=A'F=2-2λ,A′G=
2λ2-8λ+4
,要使A、C兩點(diǎn)能重合于點(diǎn)A',則在△A'EF中,A'E+A'F>EF,由此能求出λ的范圍和三棱錐A′-EFD的體積.
解答:(1)證明:∵邊長為2的正方形ABCD中,
E、F是AB、BC的中點(diǎn),將△AED、△DCF分別沿DE、DF折起,使AC兩點(diǎn)重合于點(diǎn)A′,
∴A'D⊥A'E,A'D⊥A'F,A'E∩A'F=A',
∴A'D⊥面A'EF,
∵EF?面A'EF,∴A'D⊥EF.
 
(2)解:取EF中點(diǎn)G,連接A'G,則A'G⊥EF,
∵BE=BF=λBC=2λ,∠EBF=90°,∴EF=2
2
λ
,
A'E=A'F=2-2λ,A′G=
2λ2-8λ+4

要使A、C兩點(diǎn)能重合于點(diǎn)A',則在△A'EF中,A'E+A'F>EF
2(2-2λ)>2
2
λ

0<λ<2-
2
,
∵DA'⊥A'F,A'D⊥EF,∴A'D⊥面A'EF,
VA′-EFD=
1
3
SA′EF•A′D=
2
2
λ
3
2λ2-8λ+4
=
4
3
λ
λ2-4λ+2
點(diǎn)評:本題考查異面直線垂直的證明,考查三棱錐的體積的求法.解題時要認(rèn)真審題,注意翻折變換中數(shù)量關(guān)系的變化,合理地進(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖放置的邊長為1的正三角形PAB沿x軸滾動,設(shè)頂點(diǎn)A(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式是y=f(x),則f(x)在區(qū)間[-2,1]上的解析式是
 
;(說明:“正三角形PAB沿x軸滾動”包括沿x軸正方向和沿x軸負(fù)方向滾動.沿x軸正方向滾動指的是先以頂點(diǎn)A為中心順時針旋轉(zhuǎn),當(dāng)頂點(diǎn)B落在x軸上時,再以頂點(diǎn)B為中心順時針旋轉(zhuǎn),如此繼續(xù);類似地,正三角形PAB也可以沿x軸負(fù)方向逆時針滾動)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•洛陽一模)如圖放置的邊長為1的正三角形ABC沿x軸的正方向滾動,設(shè)頂點(diǎn)A(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系是y=f(x).則f(x)在兩個相鄰零點(diǎn)間的圖象與x軸圍成的面積是
3
+
3
4
3
+
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,過正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的邊長為2,OP=2,連接AP、BP、CP、DP,M、N分別是AB、BC的中點(diǎn),以O(shè)為原點(diǎn),射線OM、ON、OP分別為Ox軸、Oy軸、Oz軸的正方向建立空間直角坐標(biāo)系.若E、F分別為PA、PB的中點(diǎn),求A、B、C、D、E、F的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖放置的邊長為2的正方形PABC沿x軸滾動.設(shè)頂點(diǎn)P(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系是y=f(x),則f(x)的最小正周期為
 
;  y=f(x)在其兩個相鄰零點(diǎn)間的圖象與x軸所圍區(qū)域的面積為
 

(說明:“正方形PABC 沿x軸滾動”包括沿x軸正方向和沿x軸負(fù)方向滾動.沿x軸正方向滾動指的是先以頂點(diǎn)A為中心順時針旋轉(zhuǎn),當(dāng)頂點(diǎn)B落在x軸上時,再以頂點(diǎn)B為中心順時針旋轉(zhuǎn),如此繼續(xù).類似地,正方形PABC可以沿x軸負(fù)方向滾動.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省四校聯(lián)考高三(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

如圖放置的邊長為1的正三角形PAB沿x軸滾動,設(shè)頂點(diǎn)A(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式是y=f(x),則f(x)在區(qū)間[-2,1]上的解析式是    ;(說明:“正三角形PAB沿x軸滾動”包括沿x軸正方向和沿x軸負(fù)方向滾動.沿x軸正方向滾動指的是先以頂點(diǎn)A為中心順時針旋轉(zhuǎn),當(dāng)頂點(diǎn)B落在x軸上時,再以頂點(diǎn)B為中心順時針旋轉(zhuǎn),如此繼續(xù);類似地,正三角形PAB也可以沿x軸負(fù)方向逆時針滾動)

查看答案和解析>>

同步練習(xí)冊答案