如圖,已知等軸雙曲線C:上一定點(diǎn)P(,)及曲線上的兩個(gè)動(dòng)點(diǎn)A、B滿足()?()=0(其中O為原點(diǎn)).

(1)求證:()?()=0;

(2)求|AB|的最小值.

解:(1)設(shè)A(11),B(2,2),AP、BP的中點(diǎn)分別為M、N,

,

兩式相減得

同理

=0,即

∴OM⊥ON,即().()=0.

(2)∵∠MON+∠MPN=,∴O、M、P、N四點(diǎn)共圓,且MN為圓的直徑,OP為圓的弦.

|MN|≥|OP|,

∴|AB|=2|MN|≥2|OP|=2

因此|AB|的最小值為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知等軸雙曲線C的兩個(gè)焦點(diǎn)F1、F2在直線y=x上,線段F1F2的中點(diǎn)是坐標(biāo)原點(diǎn),且雙曲線經(jīng)過(guò)點(diǎn)(3,
3
2
).
(1)若已知下列所給的三個(gè)方程中有一個(gè)是等軸雙曲線C的方程:①x2-y2=
27
4
;②xy=9;③xy=
9
2
.請(qǐng)確定哪個(gè)是等軸雙曲線C的方程,并求出此雙曲線的實(shí)軸長(zhǎng);
(2)現(xiàn)要在等軸雙曲線C上選一處P建一座碼頭,向A(3,3)、B(9,6)兩地轉(zhuǎn)運(yùn)貨物.經(jīng)測(cè)算,從P到A、從P到B修建公路的費(fèi)用都是每單位長(zhǎng)度a萬(wàn)元,則碼頭應(yīng)建在何處,才能使修建兩條公路的總費(fèi)用最低?
(3)如圖,函數(shù)y=
3
3
x+
1
x
的圖象也是雙曲線,請(qǐng)嘗試研究此雙曲線的性質(zhì),你能得到哪些結(jié)論?(本小題將按所得到的雙曲線性質(zhì)的數(shù)量和質(zhì)量酌情給分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年數(shù)學(xué)寒假作業(yè)(09)(解析版) 題型:解答題

已知等軸雙曲線C的兩個(gè)焦點(diǎn)F1、F2在直線y=x上,線段F1F2的中點(diǎn)是坐標(biāo)原點(diǎn),且雙曲線經(jīng)過(guò)點(diǎn)(3,).
(1)若已知下列所給的三個(gè)方程中有一個(gè)是等軸雙曲線C的方程:①x2-y2=;②xy=9;③xy=.請(qǐng)確定哪個(gè)是等軸雙曲線C的方程,并求出此雙曲線的實(shí)軸長(zhǎng);
(2)現(xiàn)要在等軸雙曲線C上選一處P建一座碼頭,向A(3,3)、B(9,6)兩地轉(zhuǎn)運(yùn)貨物.經(jīng)測(cè)算,從P到A、從P到B修建公路的費(fèi)用都是每單位長(zhǎng)度a萬(wàn)元,則碼頭應(yīng)建在何處,才能使修建兩條公路的總費(fèi)用最低?
(3)如圖,函數(shù)y=x+的圖象也是雙曲線,請(qǐng)嘗試研究此雙曲線的性質(zhì),你能得到哪些結(jié)論?(本小題將按所得到的雙曲線性質(zhì)的數(shù)量和質(zhì)量酌情給分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年上海市十校高三(下)聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知等軸雙曲線C的兩個(gè)焦點(diǎn)F1、F2在直線y=x上,線段F1F2的中點(diǎn)是坐標(biāo)原點(diǎn),且雙曲線經(jīng)過(guò)點(diǎn)(3,).
(1)若已知下列所給的三個(gè)方程中有一個(gè)是等軸雙曲線C的方程:①x2-y2=;②xy=9;③xy=.請(qǐng)確定哪個(gè)是等軸雙曲線C的方程,并求出此雙曲線的實(shí)軸長(zhǎng);
(2)現(xiàn)要在等軸雙曲線C上選一處P建一座碼頭,向A(3,3)、B(9,6)兩地轉(zhuǎn)運(yùn)貨物.經(jīng)測(cè)算,從P到A、從P到B修建公路的費(fèi)用都是每單位長(zhǎng)度a萬(wàn)元,則碼頭應(yīng)建在何處,才能使修建兩條公路的總費(fèi)用最低?
(3)如圖,函數(shù)y=x+的圖象也是雙曲線,請(qǐng)嘗試研究此雙曲線的性質(zhì),你能得到哪些結(jié)論?(本小題將按所得到的雙曲線性質(zhì)的數(shù)量和質(zhì)量酌情給分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年上海市十校高三(下)聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知等軸雙曲線C的兩個(gè)焦點(diǎn)F1、F2在直線y=x上,線段F1F2的中點(diǎn)是坐標(biāo)原點(diǎn),且雙曲線經(jīng)過(guò)點(diǎn)(3,).
(1)若已知下列所給的三個(gè)方程中有一個(gè)是等軸雙曲線C的方程:①x2-y2=;②xy=9;③xy=.請(qǐng)確定哪個(gè)是等軸雙曲線C的方程,并求出此雙曲線的實(shí)軸長(zhǎng);
(2)現(xiàn)要在等軸雙曲線C上選一處P建一座碼頭,向A(3,3)、B(9,6)兩地轉(zhuǎn)運(yùn)貨物.經(jīng)測(cè)算,從P到A、從P到B修建公路的費(fèi)用都是每單位長(zhǎng)度a萬(wàn)元,則碼頭應(yīng)建在何處,才能使修建兩條公路的總費(fèi)用最低?
(3)如圖,函數(shù)y=x+的圖象也是雙曲線,請(qǐng)嘗試研究此雙曲線的性質(zhì),你能得到哪些結(jié)論?(本小題將按所得到的雙曲線性質(zhì)的數(shù)量和質(zhì)量酌情給分)

查看答案和解析>>

同步練習(xí)冊(cè)答案