精英家教網(wǎng)已知四棱錐P-ABCD,底面ABCD是∠A=60°、邊長(zhǎng)為a的菱形,又PD⊥底ABCD,且PD=CD,點(diǎn)M、N分別是棱AD、PC的中點(diǎn).
(1)證明:DN∥平面PMB;
(2)證明:平面PMB⊥平面PAD;
(3)求點(diǎn)A到平面PMB的距離.
分析:(1)取PB中點(diǎn)Q,連接MQ、NQ,再加上QN∥BC∥MD,且QN=MD,于是DN∥MQ,再利用直線與平面平行的判定定理進(jìn)行證明,即可解決問(wèn)題;
(2)易證PD⊥MB,又因?yàn)榈酌鍭BCD是∠A=60°、邊長(zhǎng)為a的菱形,且M為AD中點(diǎn),然后利用平面與平面垂直的判定定理進(jìn)行證明;
(3)因?yàn)镸是AD中點(diǎn),所以點(diǎn)A與D到平面PMB等距離,過(guò)點(diǎn)D作DH⊥PM于H,由(2)平面PMB⊥平面PAD,所以DH⊥平面PMB,DH是點(diǎn)D到平面PMB的距離,從而求解.
解答:精英家教網(wǎng)解:(1)證明:取PB中點(diǎn)Q,連接MQ、NQ,
因?yàn)镸、N分別是棱AD、PC中點(diǎn),
所以QN∥BC∥MD,且QN=MD,于是DN∥MQ.
DN∥MQ
MQ⊆平面PMB
DN?平面PMB
?DN∥平面PMB.

(2)
PD⊥平面ABCD
MB⊆平面ABCD
?PD⊥MB
又因?yàn)榈酌鍭BCD是∠A=60°、邊長(zhǎng)為a的菱形,且M為AD中點(diǎn),
所以MB⊥AD.
又AD∩PD=D,
所以MB⊥平面PAD.
MB⊥平面PAD
MB⊆平面PMB
?平面PMB⊥平面PAD.

(3)因?yàn)镸是AD中點(diǎn),所以點(diǎn)A與D到平面PMB等距離.
過(guò)點(diǎn)D作DH⊥PM于H,由(2)平面PMB⊥平面PAD,所以DH⊥平面PMB.
故DH是點(diǎn)D到平面PMB的距離.DH=
a
2
×a
5
2
a
=
5
5
a

∴點(diǎn)A到平面PMB的距離為
5
5
a
點(diǎn)評(píng):本題主要考查空間線面的位置關(guān)系,空間角的計(jì)算等基本知識(shí),考查空間想象能力、邏輯思維能力、運(yùn)算求解能力和探究能力,同時(shí)考查學(xué)生靈活利用圖形,借助向量工具解決問(wèn)題的能力,考查數(shù)形結(jié)合思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點(diǎn),F(xiàn)為AD的中點(diǎn).
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點(diǎn)M是四邊形ABCD內(nèi)的一動(dòng)點(diǎn),PM與平面ABCD所成的角始終為45°,求動(dòng)直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,側(cè)面PBC⊥底面ABCD,O是BC的中點(diǎn).
(1)求證:PO⊥平面ABCD;
(2)求證:PA⊥BD
(3)若二面角D-PA-O的余弦值為
10
5
,求PB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E為BC中點(diǎn),AE與BD交于O點(diǎn),AB=BC=2CD=2,BD⊥PE.
(1)求證:平面PAE⊥平面ABCD; 
(2)若直線PA與平面ABCD所成角的正切值為
5
2
,PO=2,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是線段PC上一點(diǎn),PC⊥平面BDE.
(Ⅰ)求證:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直線AC與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省濟(jì)寧一中高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點(diǎn),F(xiàn)為AD的中點(diǎn).
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點(diǎn)M是四邊形ABCD內(nèi)的一動(dòng)點(diǎn),PM與平面ABCD所成的角始終為45°,求動(dòng)直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案