【題目】在正四面體P﹣ABC中,點M是棱PC的中點,點N是線段AB上一動點,且 ,設(shè)異面直線 NM 與 AC 所成角為α,當(dāng) 時,則cosα的取值范圍是

【答案】[ , ]
【解析】解:設(shè)P到平面ABC的射影為點O,取BC中點D,

以O(shè)為原點,在平面ABC中,以過O作DB的平行線為x軸,

以O(shè)D為y軸,以O(shè)P為z軸,建立空間直角坐標(biāo)系,如圖,

設(shè)正四面體P﹣ABC的棱長為4

則A(0,﹣4,0),B(2 ,2,0),C(﹣2 ,2,2 ),P(0,0,4 ),M(﹣ ,1,2 ),

,得N( ),

=(﹣ ,5﹣6λ,2 ), =(﹣2 ,6,0),

∵異面直線 NM 與 AC 所成角為α, ,

∴cosα= = ,設(shè)3﹣2λ=t,則 ,

∴cosα= = ,

,

∴cosα的取值范圍是[ , ].

故答案為:[ , ].

設(shè)P到平面ABC的射影為點O,取BC中點D,以O(shè)為原點,在平面ABC中,以過O作DB的平行線為x軸,以O(shè)D為y軸,以O(shè)P為z軸,建立空間直角坐標(biāo)系,利用向量法能求出cosα的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科考試中,從甲、乙兩個班級各抽取10名同學(xué)的成績進(jìn)行統(tǒng)計分析,兩班成績的莖葉圖如圖所示,成績不小于90分為及格. (Ⅰ)設(shè)甲、乙兩個班所抽取的10名同學(xué)成績方差分別為 、 ,比較 的大。ㄖ苯訉懗鼋Y(jié)果,不寫過程);
(Ⅱ)從甲班10人任取2人,設(shè)這2人中及格的人數(shù)為X,求X的分布列和期望;
(Ⅲ)從兩班這20名同學(xué)中各抽取一人,在已知有人及格的條件下,求抽到乙班同學(xué)不及格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺舉行電視奧運知識大獎賽,比賽分初賽和決賽兩部分.為了增加節(jié)目的趣味性,初賽采用選手選一題答一題的方式進(jìn)行,每位選手最多有5次選題答題的機(jī)會,選手累計答對3題或答錯3題即終止其初賽的比賽,答對3題者直接進(jìn)入決賽,答錯3題者則被淘汰.已知選手甲答題的正確率為 . (Ⅰ)求選手甲可進(jìn)入決賽的概率;
(Ⅱ)設(shè)選手甲在初賽中答題的個數(shù)為ξ,試寫出ξ的分布列,并求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正三棱柱中,D是AC的中點,AB1⊥BC1,則平面DBC1與平面CBC1所成的角為

A.30° B.45°

C.60° D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

(1)請畫出上表數(shù)據(jù)的散點圖.

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.

(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤.

(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知拋物線 C1:y2=2px (p>0),直線 l 與拋物線 C 相交于 A、B 兩點,且當(dāng)傾斜角為 60°的直線 l 經(jīng)過拋物線 C1 的焦點 F 時,有|AB|=

(Ⅰ)求拋物線 C 的方程;
(Ⅱ)已知圓 C2:(x﹣1)2+y2= ,是否存在傾斜角不為 90°的直線 l,使得線段 AB 被圓 C2截成三等分?若存在,求出直線 l 的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= +lg(x﹣1)的定義域是(
A.(1,+∞)
B.(﹣∞,2)
C.(2,+∞)
D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求證:不論m取什么實數(shù),直線(2m-1)x+(m+3)y-(m-11)=0都經(jīng)過一個定點,并求出這個定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

1)請畫出上表數(shù)據(jù)的散點圖.

2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.

3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤.

(參考數(shù)值:3×2.54×35×46×4.566.5

查看答案和解析>>

同步練習(xí)冊答案