(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[0,t](0<t<3)上的最大值和最小值.
(3)在(1)的結(jié)論下,關(guān)于x的方程f(x)=c在區(qū)間[1,3]上恰有兩個相異的實根,求實數(shù)c的取值范圍.
思路分析:由導(dǎo)數(shù)的幾何意義寫出過P點的切線方程,結(jié)合已知條件求出a,b,利用導(dǎo)數(shù)求最值,注意對參數(shù)t的討論.求c的范圍要借助函數(shù)的單調(diào)性,用方程的觀點列不等式.
解:(1)因為f′(x)=3x2+2ax,所以曲線在P(1,0)處的切線斜率為f′(1)=3+2a,即3+2a=-3,a=-3.
又函數(shù)過(1,0)點,即-2+b=0,b=2.
所以a=-3,b=2,f(x)=x3-3x2+2.
(2)由f(x)=x3-3x2+2,f′(x)=3x2-6x.由f′(x)=0,得x=0或x=2.
①當(dāng)0<t≤2時,在區(qū)間(0,t)上f′(x)<0,f(x)在[0,t]上是減函數(shù),所以f(x)max=f(0)=2,f(x)min=f(t)=t3-3t2+2.
②當(dāng)2<t<3時,當(dāng)x變化時,f′(x)、f(x)的變化狀態(tài)見下表:
x | 0 | (0,2) | 2 | (2,t) | t |
f′(x) | 0 | - | 0 | + | + |
f(x) | 2 | ?↘ | -2 | ?↗ | t3-3t2+2 |
f(x)min=f(2)=-2.
f(x)max為f(0)與f(t)中較大的一個.
f(t)-f(0)=t3-3t2=t2(t-3)<0.
所以f(x)max=f(0)=2.
(3)令g(x)=f(x)-c=x3-3x2+2-c,g′(x)=3x2-6x=3x(x-2).
在x∈[1,2)上,g′(x)<0;在x∈(2,3]上,g′(x)>0.
要使g(x)=0在[1,3]上恰有兩個相異的實根,則
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省東陽中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022
已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省許昌市長葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com