【題目】為監(jiān)控某種零件的一條生產線的生產過程,檢驗員每天從該生產線上隨機抽取10個零件,度量其內徑尺寸(單位:).根據(jù)長期生產經驗,可以認為這條生產線正常狀態(tài)下生產的零件的內徑尺寸服從正態(tài)分布.
(1)假設生產狀態(tài)正常,記X表示某一天內抽取的10個零件中其內徑尺寸在之外的零件數(shù),求及X的數(shù)學期望;
(2)某天正常工作的一條生產線數(shù)據(jù)記錄的莖葉圖如下圖所示:
①計算這一天平均值與標準差;
②一家公司引進了一條這種生產線,為了檢查這條生產線是否正常,用這條生產線試生產了5個零件,度量其內徑分別為(單位:):95,103,109,112,119,試問此條生產線是否需要進一步調試,為什么?
參考數(shù)據(jù):,,
,,,
,,.
【答案】(1); (2)①;.②需要進一步調試,理由見解析.
【解析】
(1)根據(jù)原則,可求得當和時的概率,結合對立事件的概率關系即可求得;由正態(tài)分布的期望公式即可求得X的數(shù)學期望.
(2)根據(jù)莖葉圖,列出數(shù)據(jù)即可求得平均值,由方差公式先求得,再求得標準差;由正態(tài)分布的原則,計算出.觀測5個零件與該范圍關系,即可判斷是否需要進一步調試.
(1)由題意
則
所以
所以
由題意可知
則
(2)①由莖葉圖可得10個數(shù)據(jù)為:96,96,99,99,102,102,104,104,105,113
則平均值
由參考數(shù)據(jù)可得
②需要進一步調試,理由如下:
由①可知,若生產線正常工作,則服從正態(tài)分布
則
可知零件落在之內的概率為,落在之外的概率為
而
由原則可知生產線異常,需進一步調試
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在中,,P為AB上一動點,交于AC于點D,現(xiàn)將沿PD翻折至,使平面平面PBCD.
(1)若,求棱錐的體積;
(2)若點P為AB的中點,求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)若,求的單調區(qū)間;
(2)若,求的極大值;
(3)若,指出的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】李克強總理在2018年政府工作報告指出,要加快建設創(chuàng)新型國家,把握世界新一輪科技革命和產業(yè)變革大勢,深入實施創(chuàng)新驅動發(fā)展戰(zhàn)略,不斷增強經濟創(chuàng)新力和競爭力.某手機生產企業(yè)積極響應政府號召,大力研發(fā)新產品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:
單價(千元) | 3 | 4 | 5 | 6 | 7 | 8 |
銷量(百件) | 70 | 65 | 62 | 59 | 56 |
已知.
(1)若變量,具有線性相關關系,求產品銷量(百件)關于試銷單價(千元)的線性回歸方程;
(2)用(1)中所求的線性回歸方程得到與對應的產品銷量的估計值.當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從個銷售數(shù)據(jù)中任取個,求“好數(shù)據(jù)”至少個的概率.
(參考公式:線性回歸方程中,的估計值分別為,).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從四所高校中選2所.
(1)求甲、乙、丙三名同學都選高校的概率;
(2)若甲必選,記為甲、乙、丙三名同學中選校的人數(shù),求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場經銷某商品,根據(jù)以往資料統(tǒng)計,顧客采用的付款期數(shù)的分布列為
1 | 2 | 3 | 4 | 5 | |
0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
某商場經銷一件該商品,采用1期付款,其利潤為200元;分2期或3期付款,其利潤為250元;分4期或5期付款,其利潤為300元.表示經銷一件該商品的利潤.
(1)求事件:“購買該商品的3位顧客中,至少有1位采用1期付款”的概率;
(2)求的分布列
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com