已知向量數(shù)學(xué)公式,且m,n是方程f(x)=0的兩個(gè)實(shí)根,
(1)設(shè)g(a)=m3+n3+a3,求g(a)的最小值;
(2)若不等式數(shù)學(xué)公式在x∈[1,+∞)上恒成立,求實(shí)數(shù)b的取值范圍;
(3)對(duì)于(1)中的函數(shù)y=g(a),給定函數(shù)h(x)=c(xlnx-x3),(c<0),若對(duì)任意的x0∈[2,3],總存在x1∈[1,2],使得g(x0)=h(x1),求實(shí)數(shù)c的取值范圍.

解:(1)f(x)=x2+(a-3)x+a2-3a有兩個(gè)實(shí)根,
所以△≥0,解得a∈[-1,3]
由題意
g(a)=m3+n3+a3=(m+n)[(m+n)2-3mn]+a3=3a3-9a2+27,a∈[-1,3]
g′(a)=9a(a-2)=0,解得a=0或2
g(0)=g(3)=27,g(-1)=g(2)=15
所以最小值為15.
(2)若不等式上恒成立,即恒成立,
解得b>x(lnx-x2
令h(x)=x(lnx-x2),x∈[1,+∞)
則h'(x)=1+lnx-3x2,x∈[1,+∞)
則h′′(x)=-6x,x∈[1,+∞)
∵h(yuǎn)′′(x)=-6x<0在[1,+∞)恒成立
∴h'(x)=1+lnx-3x2,在區(qū)間[1,+∞)為減函數(shù)
則h'(x)≤h'(1)=-2<0恒成立
∴h(x)=x(lnx-x2)在區(qū)間[1,+∞)遞減
則h(x)≤h(1)=-1
故b>-1
(3)由(1)得對(duì)任意的x0∈[2,3],g(x0)∈[15,27]
由(2)得函數(shù)h(x)=c(xlnx-x3),(c<0),在區(qū)間[1,2]單調(diào)遞增
則h(1)=-c≤h(x)≤h(2)=c(2ln2-8)
若對(duì)任意的x0∈[2,3],總存在x1∈[1,2],使得g(x0)=h(x1),
則-c≤15且c(2ln2-8)≥27
解得:-15≤c≤
分析:(1)根據(jù)f(x)=x2+(a-3)x+a2-3a有兩個(gè)實(shí)根,得到△≥0,解得a∈[-1,3],又由題意從而g(a)=m3+n3+a3=(m+n)[(m+n)2-3mn]+a3=3a3-9a2+27,a∈[-1,3]利用導(dǎo)數(shù)即可求得最小值為15.
(2)先將不等式上恒成立,轉(zhuǎn)化為恒成立,即b>x(lnx-x2),構(gòu)造令h(x)=x(lnx-x2),x∈[1,+∞)可得h'(x)=1+lnx-3x2,h′′(x)=-6x,根據(jù)導(dǎo)函數(shù)符號(hào)與函數(shù)單調(diào)性的關(guān)系,及判斷出函數(shù)h(x)的單調(diào)性,進(jìn)而得到答案.
(3)由(1)和(2)的結(jié)論,我們易求出函數(shù)y=g(a)在區(qū)間[2,3]上的值域,及函數(shù)h(x)=c(xlnx-x3)在[1,2]的上的值域,再結(jié)合對(duì)任意的x0∈[2,3],總存在x1∈[1,2],使得g(x0)=h(x1),構(gòu)造關(guān)于c的不等式組,解不等式組即可得到答案.
點(diǎn)評(píng):本小題主要考查函數(shù)恒成立問(wèn)題、利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,轉(zhuǎn)化思想.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
p
=(x,a-3),
q
=(x,x+a),f(x)=
p
q
,且m,n是方程f(x)=0的兩個(gè)實(shí)根.
(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)g(a)=m3+n3+a3,求g(a)的最小值;
(Ⅲ)給定函數(shù)h(x)=bx+1(b>0),若對(duì)任意的x0∈[2,3],總存在x1∈[1,2],使得g(x0)=h(x1),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
p
=(a-3,x),
q
=(x+a,x),f(x)=
p
q
,且m,n是方程f(x)=0的兩個(gè)實(shí)根,
(1)設(shè)g(a)=m3+n3+a3,求g(a)的最小值;
(2)若不等式lnx-
b
x
x2
在x∈[1,+∞)上恒成立,求實(shí)數(shù)b的取值范圍;
(3)對(duì)于(1)中的函數(shù)y=g(a),給定函數(shù)h(x)=c(xlnx-x3),(c<0),若對(duì)任意的x0∈[2,3],總存在x1∈[1,2],使得g(x0)=h(x1),求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量,且m,n是方程的兩個(gè)實(shí)根.

(Ⅰ)求實(shí)數(shù)a的取值范圍;

(Ⅱ)設(shè)的最小值;

(Ⅲ)給定函數(shù),若對(duì)任意,總存在,使得,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)上的兩點(diǎn),已知向量,,若m·n=0且橢圓的離心率短軸長(zhǎng)為2,為坐標(biāo)原點(diǎn).

  (Ⅰ)求橢圓的方程;

 (Ⅱ)若直線AB過(guò)橢圓的焦點(diǎn)F(0,c),(c為半焦距),求直線AB的斜率k的值;

(Ⅲ)試問(wèn):△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案