從某年級學生中,隨機抽取50人,其體重(單位:千克)的頻數(shù)分布表如下:

分組(體重)
 



頻數(shù)(人)
 
 
 
 
 
(1)根據(jù)頻數(shù)分布表計算體重在的頻率;
(2)用分層抽樣的方法從這50人中抽取10人,其中體重在中共有幾人?
(3)在(2)中抽出的體重在的人中,任取2人,求體重在中各有1人的概率.

(1);(2)5人;(3)

解析試題分析:(1)頻率=頻數(shù)÷樣本總量;(2)分層抽樣要按各層占的比例抽取,從這50人中抽取10人就確定了各層內的抽取的比例為,故在內抽取的比例也都是,共有:
(人);(3)抽出的體重在的5人中有三人體重在內,有2人體重在內,可采用列舉法把所以可能的情況一一列舉出,共10種情況,從中找出符合要求的情況有6中,故. 故體重在中各有1人的概率為 .
試題解析:(1)體重在的頻率 
(2)用分層抽樣的方法抽取10人,其中體重在體重在中共有:
(人)
(3)抽出的體重在的5人中,設體重中的人為,體重在中的人為,任取2 人,共有:這10種情況.
其中體重在中各有1人的情況有:
共6種.
故體重在中各有1人的概率為 .
考點:1、分層抽樣方法;2、古典概型.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

今年年初,我國多個地區(qū)發(fā)生了持續(xù)性大規(guī)模的霧霾天氣,給我們的身體健康產生了巨大的威脅。私家車的尾氣排放也是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力。為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調查情況進行整理后制成下表:

年齡(歲)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
頻數(shù)
5
10
15
10
5
5
贊成人數(shù)
4
6
9
6
3
4
(1)完成被調查人員的頻率分布直方圖;
(2)若從年齡在[15,25),[25,35)的被調查者中各隨機選取兩人進行進行追蹤調查,記選中的4人中不贊成“車輛限行”的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為考查某種藥物預防疾病的效果,進行動物試驗,得到如下丟失數(shù)據(jù)的列聯(lián)表:

 
患病
未患病
總計
沒服用藥
20
30
50
服用藥


50
總計


100
設從沒服用藥的動物中任取兩只,未患病數(shù)為;從服用藥物的動物中任取兩只,未患病數(shù)為,工作人員曾計算過.
(1)求出列聯(lián)表中數(shù)據(jù)的值; 
(2)能夠以99%的把握認為藥物有效嗎?參考公式:,其中
①當K2≥3.841時有95%的把握認為、有關聯(lián);
②當K2≥6.635時有99%的把握認為有關聯(lián).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某社團組織20名志愿者利用周末和節(jié)假日參加社會公益活動,志愿者中,年齡在20至40歲的有12人,年齡大于40歲的有8人.
(1)在志愿者中用分層抽樣方法隨機抽取5名,年齡大于40歲的應該抽取幾名?
(2)上述抽取的5名志愿者中任取2名,求取出的2人中恰有1人年齡大于40歲的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

據(jù)《中國新聞網(wǎng)》10月21日報道,全國很多省市將英語考試作為高考改革的重點,一時間“英語考試該如何改”引起廣泛關注.為了解某地區(qū)學生和包括老師、家長在內的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調查(若所選擇的在校學生的人數(shù)低于被調查人群總數(shù)的80%,則認為本次調查“失效”),就“是否取消英語聽力”的問題,調查統(tǒng)計的結果如下表:

態(tài)度
 

  

 
應該取消
 
應該保留
 
無所謂
 
在校學生
 
2100人
 
120人
 
y人
 
社會人士
 
600人
 
x人
 
z人
 
已知在全體樣本中隨機抽取1人,抽到持“應該保留”態(tài)度的人的概率為0.05.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調查的人中抽取360人進行深入訪談,問應在持“無所謂”態(tài)度的人中抽取多少人?
(Ⅱ)已知y≥657,z≥55,求本次調查“失效”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩名同學參加“漢字聽寫大賽”選拔性測試.在相同的測試條件下,兩人5次測試的成績(單位:分)如下表:

(Ⅰ)請畫出甲、乙兩人成績的莖葉圖. 你認為選派誰參賽更好?說明理由(不用計算);
(Ⅱ)若從甲、乙兩人5次的成績中各隨機抽取一個成績進行分析,求抽到的兩個成績中至少有一個高于
90分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某工廠有25周歲以上(含2S周歲)工人300名,25周歲以下工人200名為研究工人的日平均生產量是否與年齡有關,現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產件數(shù)分成5組:[50,60), [60,70), [70,80), [80,90), [90,100), 分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖。

(1)求樣本中“25周歲以上(含25周歲)組”抽取的人數(shù)、日生產量平均數(shù);
(2)若“25周歲以上組”中日平均生產90件及90件以上的稱為“生產能手”;“25周歲以下組”中日平均生產不足60件的稱為“菜鳥”。從樣本中的“生產能手”和”菜鳥”中任意抽取2人,求這2人日平均生產件數(shù)之和X的分布列及期望。(“生產能手”日平均生產件數(shù)視為95件,“菜鳥”日平均生產件數(shù)視為55件)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2013年12月21日上午10時,省會首次啟動重污染天氣Ⅱ級應急響應,正式實施機車尾號限行,當天某報社為了解公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調查情況進行整理后制成下表:

(1)完成被調查人員的頻率分布直方圖;
(2)若從年齡在,的被調查者中各隨機選取兩人進行追蹤調查,記選中的4人中不贊成“車輛限行”的人數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

成都市為“市中學生知識競賽”進行選拔性測試,且規(guī)定:成績大于或等于90分的有參賽資格,90分以下(不包括90分)的則被淘汰。若現(xiàn)有500人參加測試,學生成績的頻率分布直方圖如下:

(I)求獲得參賽資格的人數(shù);
(II)根據(jù)頻率直方圖,估算這500名學生測試的平均成績;
(III)若知識競賽分初賽和復賽,在初賽中每人最多有5次選題答題的機會,累計答對3題或答錯3題即終止,答對3題者方可參加復賽,已知參賽者甲答對每一個問題的概率都相同,并且相互之間沒有影響,已知他連續(xù)兩次答錯的概率為,求甲在初賽中答題個數(shù)的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案