已知拋物線的準線與雙曲線相切,則雙曲線的離心率        
;

試題分析:拋物線的準線:x=-2與雙曲線相切,所以a=2,b="1," 雙曲線的離心率 =.
點評:簡單題,涉及圓錐曲線的幾何性質(zhì)問題,往往與a,b,c,e,p有關(guān),熟練掌握它們的內(nèi)在聯(lián)系是解題的關(guān)鍵。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖:在面積為1的DPMN中,tanÐPMN=,tanÐMNP=-2,試建立適當?shù)淖鴺讼担笠?i>M、N為焦點且過點P的橢圓方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)如圖,已知直線OP1OP2為雙曲線E:的漸近線,△P1OP2的面積為,在雙曲線E上存在點P為線段P1P2的一個三等分點,且雙曲線E的離心率為.

(1)若P1、P2點的橫坐標分別為x1、x,則x1、x2之間滿足怎樣的關(guān)系?并證明你的結(jié)論;
(2)求雙曲線E的方程;
(3)設(shè)雙曲線E上的動點,兩焦點,若為鈍角,求點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)橢圓)的兩個焦點是),且橢圓與圓有公共點.
(1)求的取值范圍;
(2)若橢圓上的點到焦點的最短距離為,求橢圓的方程;
(3)對(2)中的橢圓,直線)與交于不同的兩點、,若線段的垂直平分線恒過點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知點F( 1,0),與直線4x+3y + 1 =0相切,動圓M與及y軸都相切. (I )求點M的軌跡C的方程;(II)過點F任作直線l,交曲線C于A,B兩點,由點A,B分別向各引一條切線,切點 分別為P,Q,記.求證是定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

從拋物線上一點P引拋物線準線的垂線,垂足為M,且|PM|=5,設(shè)拋物線的焦點為F,則△MPF的面積(   )
A.5B.10C.20D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,已知橢圓的焦點為、,離心率為,過點的直線交橢圓、兩點.

(1)求橢圓的方程;
(2)①求直線的斜率的取值范圍;
②在直線的斜率不斷變化過程中,探究是否總相等?若相等,請給出證明,若不相等,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若點到點的距離比它到直線的距離少1,則動點的軌跡方程是    __________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心為坐標原點O,焦點在x軸上,斜率為1且過橢圓右焦點F的直線交橢圓于A、B兩點,=(3,-1)共線.
(1)求橢圓的離心率;
(2)設(shè)M為橢圓上任意一點,且),證明為定值.

查看答案和解析>>

同步練習冊答案