已知在R上可導(dǎo)的函數(shù)f(x)的圖象如圖所示,則不等式f(x)•f′(x)<0的解集為( )

A.(-2,0)
B.(-∞,-2)∪(-1,0)
C.(-∞,-2)∪(0,+∞)
D.(-2,-1)∪(0,+∞)
【答案】分析:函數(shù)y=f(x)(x∈R)的圖象得函數(shù)的單調(diào)性,根據(jù)單調(diào)性與導(dǎo)數(shù)的關(guān)系得導(dǎo)數(shù)的符號(hào),得不等式f(x)f′(x)<0的解集
解答:解:由f(x)圖象單調(diào)性可得f′(x)在(-∞,-1)∪(0,+∞)大于0,
在(-1,0)上小于0,
∴f(x)f′(x)<0的解集為(-∞,-2)∪(-1,0).
故選B.
點(diǎn)評(píng):考查識(shí)圖能力,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性是重點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在R上可導(dǎo)的函數(shù)f(x)的圖象如圖所示,則不等式f(x)•f′(x)<0的解集為( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R上可導(dǎo),函數(shù)F(x)=f(x2-4)+f(4-x2)給出以下四個(gè)命題:(1)F(0)=0(2)F′(±2)=0(3)F′(0)=0(4)F′(x)的圖象關(guān)于原點(diǎn)對(duì)稱,其中正確的命題序號(hào)有
(2)(3)(4)
(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黑龍江省2012屆高二下學(xué)期期末考試數(shù)學(xué)(文) 題型:填空題

13.已知函數(shù)在R上可導(dǎo),函數(shù)給出以下四個(gè)命題:

(1)  (2)  (3)  (4)的圖象關(guān)于原點(diǎn)對(duì)稱,其中正確的命題序號(hào)有__________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)在R上可導(dǎo),函數(shù)F(x)=f(x2-4)+f(4-x2)給出以下四個(gè)命題:(1)F(0)=0(2)F′(±2)=0(3)F′(0)=0(4)F′(x)的圖象關(guān)于原點(diǎn)對(duì)稱,其中正確的命題序號(hào)有________.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹