【題目】在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若(2a﹣c)cosB=bcosC.
(1)求角B的大小,
(2)若a=3,△ABC的面積為 ,求 的值.

【答案】
(1)解:∵(2a﹣c)cosB=bcosC,

由正弦定理得:(2sinA﹣sinC)cosB=sinBcosC,

∴2sinAcosB=sinCcosB+cosCsinB=sin(B+C)=sinA,

∵0<A<π,∴sinA>0,∴2cosB=1,cosB= ,

又0<B<π,∴B=


(2)解:法一:∵a=3,△ABC的面積為 ,

3csin =

∴c=2,

b2=22+32﹣2×2×3cos =7,

∴b= ,

∴cosA= = ,

=bccos(π﹣A)=2 ×(﹣ )=﹣1.

法二: =

=| || |cos< , >﹣

=2×3× ﹣22=﹣1


【解析】(Ⅰ)運(yùn)用正弦定理和兩角和的正弦公式,簡(jiǎn)整理,即可得到B;(Ⅱ)運(yùn)用三角形的面積公式和余弦定理,結(jié)合向量的數(shù)量積的定義,即可計(jì)算得到.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線關(guān)于x軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)P(1,2),A(x1 , y1),B(x2 , y2)均在拋物線上.

(1)求該拋物線方程;
(2)若AB的中點(diǎn)坐標(biāo)為(1,﹣1),求直線AB方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,則輸出的S=(
A.14
B.30
C.20
D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)經(jīng)過點(diǎn)(1, ),且離心率等于 . (Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)P(2,0)作直線PA,PB交橢圓于A,B兩點(diǎn),且滿足PA⊥PB,試判斷直線AB是否過定點(diǎn),若過定點(diǎn)求出點(diǎn)坐標(biāo),若不過定點(diǎn)請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2﹣ax+1,x∈[﹣1,2].
(1)若函數(shù)f(x)為單調(diào)函數(shù),求a的取值范圍;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域是一切實(shí)數(shù)的函數(shù)y=f(x),其圖象是連續(xù)不斷的,且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf(x)=0對(duì)任意實(shí)數(shù)x都成立,則稱f(x)實(shí)數(shù)一個(gè)“λ一半隨函數(shù)”,有下列關(guān)于“λ一半隨函數(shù)”的結(jié)論:①若f(x)為“1一半隨函數(shù)”,則f(0)=f(2);②存在a∈(1,+∞)使得f(x)=ax為一個(gè)“λ一半隨函數(shù);③“ 一半隨函數(shù)”至少有一個(gè)零點(diǎn);④f(x)=x2是一個(gè)“λ一班隨函數(shù)”;其中正確的結(jié)論的個(gè)數(shù)是(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩條直線l1:2x+y﹣2=0與l2:2x﹣my+4=0.
(1)若直線l1⊥l2 , 求直線l1與l2交點(diǎn)P的坐標(biāo);
(2)若l1 , l2以及x軸圍成三角形的面積為1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個(gè)頂點(diǎn)是A(4,0),B(6,7),C(0,3).
(1)求過點(diǎn)A與BC平行的直線方程.
(2)求過點(diǎn)B,并且在兩個(gè)坐標(biāo)軸上截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如下的統(tǒng)計(jì)資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0


(1)畫出散點(diǎn)圖并判斷是否線性相關(guān);
(2)如果線性相關(guān),求線性回歸方程;
(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案