函數(shù)f(x)和g(x)的定義域均為R,若f(x)是奇函數(shù),g(x)是偶函數(shù),則F(x)=f(x)·g(x)的奇偶性是________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試、理科數(shù)學(xué)(福建卷) 題型:013

對(duì)于具有相同定義域D的函數(shù)f(x)和g(x),若存在函數(shù)h(x)=kxb(k,b為常數(shù)),對(duì)任給的正數(shù)m,存在相應(yīng)的x0D,使得當(dāng)x∈Dxx0時(shí),總有則稱直線l:ykxb為曲線yf(x)與yg(x)的“分漸近線”.給出定義域均為D={x|x>1}的四組函數(shù)如下:

f(x)=x2,g(x)=;

f(x)=10-x+2,g(x)=;

③f(x)=,g(x)=;

④f(x)=,g(x)=2(x-1-e-x)

其中,曲線yf(x)與yg(x)存在“分漸近線”的是

[  ]
A.

①④

B.

②③

C.

②④

D.

③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省溫州市高三上學(xué)期期初考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

若函數(shù)f(x)和g(x)的定義域、值域都是R,則不等式f(x)> g(x)有解的充要條件是(    )

(A)$ x∈R, f(x)>g(x)                         (B)有無(wú)窮多個(gè)x (x∈R ),使得f(x)>g(x)

(C)" x∈R,f(x)>g(x)                         (D){ x∈R| f(x)≤g(x)}=F

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)高三數(shù)學(xué)函數(shù)的圖象奇偶性、周期性專項(xiàng)訓(xùn)練(河北) 題型:解答題

已知函數(shù)f(x)和g(x)的圖象關(guān)于原點(diǎn)對(duì)稱,且f(x)=x2+2x.

(1)求函數(shù)g(x)的解析式;

(2)解不等式g(x)≥f(x)-|x-1|;

(3)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若存在實(shí)常數(shù)k和b,使得函數(shù)f(x)和g(x)對(duì)其定義域上的任意實(shí)數(shù)x分別滿足:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)和g(x)的“隔離直線”.已知h(x)=x2,φ(x)=2elnx(其中e為自然對(duì)數(shù)的底數(shù)).

(1)求F(x)=h(x)-φ(x)的極值;

(2)函數(shù)h(x)和φ(x)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:專項(xiàng)題 題型:填空題

若存在實(shí)常數(shù)k和b,使得函數(shù)f(x)和g(x)對(duì)其定義域上的任意實(shí)數(shù)x分別滿足:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)和g(x)的“隔離直線”。已知h(x)=x2,φ(x)=2elnx(其中e為自然對(duì)數(shù)的底數(shù)),根據(jù)你的數(shù)學(xué)知識(shí),推斷h(x)與φ(x)間的隔離直線方程為(    )。

查看答案和解析>>

同步練習(xí)冊(cè)答案