在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點(diǎn)M是棱BB1上一點(diǎn).
(1)求證:B1D1∥平面A1BD;
(2)求證:MD⊥AC;
(3)試確定點(diǎn)M的位置,使得平面DMC1⊥平面CC1D1D.
(1)見解析. (2)見解析.(3)當(dāng)點(diǎn)M為棱BB1的中點(diǎn)時(shí),平面DMC1⊥平面CC1D1D.
【解析】
試題分析:(1)由直四棱柱概念,得BB1//DD1,
得到四邊形BB1D1D是平行四邊形,從而B1D1∥BD,由直線與平面平行的判定定理即得證.
(2)注意到BB1⊥平面ABCD,AC⊂平面ABCD,推出BB1⊥AC.
又BD⊥AC,即得AC⊥平面BB1D1D.而MD⊂平面BB1D1D,故得證.
(3)分析預(yù)見當(dāng)點(diǎn)M為棱BB1的中點(diǎn)時(shí),符合題意.此時(shí)取DC的中點(diǎn)N,D1C1的中點(diǎn)N1,連接NN1交DC1于O,連接OM,證得BN⊥DC.又DC是平面ABCD與平面DCC1D1的交線,而平面ABCD⊥平面DCC1D1,推出BN⊥平面DCC1D1.又可證得,O是NN1的中點(diǎn),由四邊形BMON是平行四邊形,得出OM⊥平面CC1D1D,得證.
試題解析:(1)由直四棱柱概念,得BB1//DD1,
∴四邊形BB1D1D是平行四邊形,∴B1D1∥BD.
而BD⊂平面A1BD,B1D1⊄平面A1BD,∴B1D1∥平面A1BD.
(2)∵BB1⊥平面ABCD,AC⊂平面ABCD,∴BB1⊥AC.
又∵BD⊥AC,且BD∩BB1=B,∴AC⊥平面BB1D1D.
而MD⊂平面BB1D1D,∴MD⊥AC.
(3)當(dāng)點(diǎn)M為棱BB1的中點(diǎn)時(shí),取DC的中點(diǎn)N,D1C1的中點(diǎn)N1,連接NN1交DC1于O,連接OM,如圖所示.
∵N是DC的中點(diǎn),BD=BC,∴BN⊥DC.又∵DC是平面ABCD與平面DCC1D1的交線,而平面ABCD⊥平面DCC1D1,∴BN⊥平面DCC1D1.
又可證得,O是NN1的中點(diǎn),∴BM∥ON且BM=ON,即四邊形BMON是平行四邊形,∴BN∥OM,∴OM⊥平面CC1D1D,因?yàn)镺M⊂面DMC1,所以平面DMC1⊥平面CC1D1D.
考點(diǎn):線面平行的判定定理,線面垂直的判定及性質(zhì),面面垂直的判定,四棱柱的幾何特征.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
4 |
1 |
3 |
VE-BCD |
VF-ABD |
3 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com