如圖,在平面直角坐標(biāo)系xOy中,以x軸為始邊作兩個銳角α、β,它們的終邊分別與單位圓交于A、B兩點.已知點A的橫坐標(biāo)為
1
5
;B點的縱坐標(biāo)為
1
5
2
.則tan(α+β)的值為
3
3
分析:根據(jù)A的橫坐標(biāo)求出cosα的值,B的縱坐標(biāo)求出sinβ的值,進(jìn)而確定出tanα與tanβ的值,所求式子利用兩角和與差的正切函數(shù)公式化簡,將各自的值代入計算即可求出值.
解答:解:根據(jù)題意得:A(
1
5
2
5
),B(
7
5
2
1
5
2
),
∴tanα=2,tanβ=
1
7
,
則tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
2+
1
7
1-2×
1
7
=3.
故答案為:3
點評:此題考查了兩角和與差的正切函數(shù)公式,以及任意角的三角函數(shù)定義,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△OAB中,點P是線段OB及線段AB延長線所圍成的陰影區(qū)域(含邊界)的任意一點,且
OP
=x
OA
+y
OB
則在直角坐標(biāo)平面內(nèi),實數(shù)對(x,y)所示的區(qū)域在直線y=4的下側(cè)部分的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、如圖,在直角坐標(biāo)平面內(nèi)有一個邊長為a,中心在原點O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點,記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為
偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面內(nèi)有一個邊長為a、中心在原點O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點,記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為(  )
A、偶函數(shù)B、奇函數(shù)C、不是奇函數(shù),也不是偶函數(shù)D、奇偶性與k有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•海珠區(qū)一模)如圖,在直角坐標(biāo)平面內(nèi),射線OT落在60°的終邊上,任作一條射線OA,OA落在∠xOT內(nèi)的概率是
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,一定長m的線段,其端點A、B分別在x軸、y軸上滑動,設(shè)點M滿足(λ是大于0,且不等于1的常數(shù)).

試問:是否存在定點E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案