年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:上海市十三校2012屆高三第二次聯(lián)考數(shù)學(xué)文科試題 題型:044
現(xiàn)代城市大多是棋盤式布局(如北京道路幾乎都是東西和南北走向).在這樣的城市中,我們說(shuō)的兩點(diǎn)間的距離往往不是指兩點(diǎn)間的直線距離(位移),而是實(shí)際路程(如圖).在直角坐標(biāo)平面內(nèi),我們定義A(x1,y1),B(x2,y2)兩點(diǎn)間的“直角距離”為:D(AB)=|x1-x2|+|y1-y2|.
(1)已知A(-3,-3),B(3,2),求A、B兩點(diǎn)的距離D(AB).
(2)求到定點(diǎn)M(1,2)的“直角距離”為2的點(diǎn)的軌跡方程.
并寫出所有滿足條件的“格點(diǎn)”的坐標(biāo)(格點(diǎn)是指橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).
(3)求到兩定點(diǎn)F1、F2的“直角距離”和為定值2a(a>0)的動(dòng)點(diǎn)軌跡方程,并在直角坐標(biāo)系內(nèi)作出該動(dòng)點(diǎn)的軌跡.
①F1(-1,0),F(xiàn)2(1,0),a=2;
②F1(-1,-1),F(xiàn)2(1,1),a=2;
③F1(-1,-1),F(xiàn)2(1,1),a=4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:上海市十三校2012屆高三第二次聯(lián)考數(shù)學(xué)理科試題 題型:044
現(xiàn)代城市大多是棋盤式布局(如北京道路幾乎都是東西和南北走向).在這樣的城市中,我們說(shuō)的兩點(diǎn)間的距離往往不是指兩點(diǎn)間的直線距離(位移),而是實(shí)際路程(如圖).在直角坐標(biāo)平面內(nèi),我們定義A(x1,y1),B(x2,y2)兩點(diǎn)間的“直角距離”為:D(AB)=|x1-x2|+|y1-y2|.
(1)在平面直角坐標(biāo)系中,寫出所有滿足到原點(diǎn)的“直角距離”為2的“格點(diǎn)”的坐標(biāo).(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn))
(2)求到兩定點(diǎn)F1、F2的“直角距離”和為定值2a(a>0)的動(dòng)點(diǎn)軌跡方程,并在直角坐標(biāo)系內(nèi)作出該動(dòng)點(diǎn)的軌跡.
①F1(-1,0),F(xiàn)2(1,0),a=2;
②F1(-1,-1),F(xiàn)2(1,1),a=2;
③F1(-1,-1),F(xiàn)2(1,1),a=4.
(3)寫出同時(shí)滿足以下兩個(gè)條件的“格點(diǎn)”的坐標(biāo),并說(shuō)明理由(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).
①到A(-1,-1),B(1,1)兩點(diǎn)“直角距離”相等;
②到C(-2,-2),D(2,2)兩點(diǎn)“直角距離”和最小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com