【題目】觀察一列數:1、2、4、8、16、32、…,發(fā)現從第二項開始,每一項與前一項的比值都是同一個常數,這個常數是_______;根據此規(guī)律,如果(為正整數)表示這個數列的第項,如果,,那么_____,…,_______;
如果欲求的值,
可令…………①
將①式兩邊同乘以2,得
……………②
由②減去①式,得.
(2)類比可得:__________.
(3)用由特殊到一般的方法知:若數列、、、…、,從第二項開始每一項與前一項之比的常數為,那么,____,…,______ (用含,,的代數式表示).
用含,,的代數式表示_________.
(4)一質點從距離原點一個單位的A點向原點方向跳動,第一次跳到OA中點處,第二次從跳到的中點處,第三次從跳到的中點處,…,如此不斷跳下去,則第50次跳動后,該質點跳動的距離是多少?
科目:初中數學 來源: 題型:
【題目】發(fā)現與探索:你能求(x﹣1)(x2019+x2018+x2017+……+x+1)的值嗎?遇到這樣的問題,我們可以先思考一下,從簡單的情形入手.先分別計算下列各式的值:
(1)(x﹣1)(x+1)=x2﹣1;
(2)(x﹣1)(x2+x+1)=x3﹣1;
(3)(x﹣1)(x3+x2+x+1)=x4﹣1;
……
由此我們可以得到:(x﹣1)(x2019+x2018+x2017+……+x+1)= ;請你利用上面的結論,完成下面兩題的計算:
(1)32019+32018+32017+……+3+1;
(2)(﹣2)50+(﹣2)49+(﹣2)48+……+(﹣2).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“化歸與轉化的思想”是指在研究解決數學問題時采用某種手段將問題通過變換使之轉化,進而使問題得到解決。
(1)我們知道可以得到。如果,求、的值.
(2)已知 試問多項式a2+b2+c2﹣ab﹣ac﹣bc的值是否與變量的取值有關?若有關請說明理由;若無關請求出多項式的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x+3與x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+c經過A、B兩點.
(1)求拋物線的解析式;
(2)點P為拋物線在第二象限內一點,過點P作x軸的垂線,垂足為點M,與直線AB交于點C,過點P作x軸的平行線交拋物線于點Q,過點Q作x軸的垂線,垂足為點N,若點P在點Q左邊,設點P的橫坐標為m.
①當矩形PQNM的周長最大時,求△ACM的面積;
②在①的條件下,當矩形PMNQ的周長最大時,過直線AC上一點G作y軸的平行線交拋物線一點F,是否存在點F,使得以點P、C、G、F為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知的一條邊的長為5,另兩邊的長是關于的一元二次方程的兩個實數根.
(1)求證:無論為何值,方程總有兩個不相等的實數根;
(2)當為何值時,為直角三角形,并求出的周長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com