【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,M、N分別是棱AA1、AD的中點(diǎn),設(shè)E是棱AB的中點(diǎn).
(1)求證:MN∥平面CEC1;
(2)求平面D1EC1與平面ABCD所成角的正切值.
【答案】
(1)證明:∵在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為等腰梯形,
AB∥CD,AB=4,BC=CD=2,AA1=2,
M、N分別是棱AA1、AD的中點(diǎn),設(shè)E是棱AB的中點(diǎn),
∴DD1∥CC1,AD∥CE,
∵AD∩DD1=D,CC1∩CE=C,
AD,DD1平面A1DD1A,CC1,CE平面CEC1,
∴平面A1DD1A∥平面CEC1,
∵M(jìn)N平面A1DD1A,∴MN∥平面CEC1
(2)解:平面D1EC1與平面ABCD所成角就是平面ABC1D1與平面ABCD所成的角,
∵CC1⊥平面ABCD,過(guò)C作CF⊥AB,交AB于F,連結(jié)C1F,
則∠CFC1是平面D1EC1與平面ABCD所成角,
∵CC1=AA1=2,CE=BC=BE=2,CF= = ,
∴tan∠CFC1= = = .
∴平面D1EC1與平面ABCD所成角的正切值為
【解析】(1)推導(dǎo)出DD1∥CC1 , AD∥CE,從而平面A1DD1A∥平面CEC1 , 由此能證明MN∥平面CEC1 . (2)平面D1EC1與平面ABCD所成角就是平面ABC1D1與平面ABCD所成的角,過(guò)C作CF⊥AB,交AB于F,連結(jié)C1F,則∠CFC1是平面D1EC1與平面ABCD所成角,由此能求出平面D1EC1與平面ABCD所成角的正切值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識(shí),掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】乒乓球單打比賽在甲、乙兩名運(yùn)動(dòng)員間進(jìn)行,比賽采用7局4勝制(即先勝4局者獲勝,比賽結(jié)束),假設(shè)兩人在每一局比賽中獲勝的可能性相同.
(1)求甲以4比1獲勝的概率;
(2)求乙獲勝且比賽局?jǐn)?shù)多于5局的概率;
(3)求比賽局?jǐn)?shù)的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x-a|.
(1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4 坐標(biāo)系與參數(shù)方程
已知函數(shù),曲線在點(diǎn)處的切線為,若時(shí),有極值.
(1)求的值;
(2)求在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)試說(shuō)明的圖象由函數(shù)的圖象經(jīng)過(guò)怎樣的變化得到?并求的單調(diào)區(qū)間;
(2)若函數(shù)與的圖象關(guān)于直線對(duì)稱,當(dāng)時(shí),求函數(shù)的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位同學(xué)玩游戲,對(duì)于給定的實(shí)數(shù)a1 , 按下列方法操作一次產(chǎn)生一個(gè)新的實(shí)數(shù):由甲、乙同時(shí)各擲一枚均勻的硬幣,如果出現(xiàn)兩個(gè)正面朝上或兩個(gè)反面朝上,則把a(bǔ)1乘以2后再減去12;如果出現(xiàn)一個(gè)正面朝上,一個(gè)反面朝上,則把a(bǔ)1除以2后再加上12,這樣就可以得到一個(gè)新的實(shí)數(shù)a2 , 對(duì)實(shí)數(shù)a2仍按上述方法進(jìn)行一次操作,又得到一個(gè)新的實(shí)數(shù)a3 , 當(dāng)a3>a1 , 甲獲勝,否則乙獲勝,若甲獲勝的概率為 ,則a1的取值范圍是( )
A.(﹣∞,12]
B.[24,+∞)
C.(12,24)
D.(﹣∞,12]∪[24,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)進(jìn)入某商場(chǎng)的每一位顧客購(gòu)買甲種商品的概率為0.5,購(gòu)買乙種商品的概率為0.6,且購(gòu)買甲種商品與購(gòu)買乙種商品相互獨(dú)立,各顧客之間購(gòu)買商品也是相互獨(dú)立的.
(1)求進(jìn)入商場(chǎng)的1位顧客購(gòu)買甲、乙兩種商品中的一種的概率;
(2)求進(jìn)入商場(chǎng)的1位顧客至少購(gòu)買甲、乙兩種商品中的一種的概率;
(3)記ξ表示進(jìn)入商場(chǎng)的3位顧客中至少購(gòu)買甲、乙兩種商品中的一種的人數(shù),求ξ的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,( 為參數(shù)).
(1)將兩曲線化成普通坐標(biāo)方程;
(2)求兩曲線的公共弦長(zhǎng)及公共弦所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)M(x,y)在|x|≤1,|y|≤1時(shí)按均勻分布出現(xiàn),試求滿足:
(1)x+y≥0的概率;
(2)x+y<1的概率;
(3)x2+y2≥1的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com