將函數(shù)f(x)=sin2x+
3
cos2x
的圖象向右平移
π
6
個單位后得到函數(shù)g(x)的圖象,則g(
π
6
)
的值為(  )
分析:利用兩角和的正弦公式化簡函數(shù)的解析式為f(x)=2sin(2x+
π
3
),再根據(jù)y=Asin(ωx+∅)的圖象變換規(guī)律求得
函數(shù)g(x)的解析式,從而求得g(
π
6
)
的值.
解答:解:∵函數(shù)f(x)=sin2x+
3
cos2x
=2sin(2x+
π
3
),
將函數(shù)f(x)=sin2x+
3
cos2x
的圖象向右平移
π
6
個單位后得到函數(shù)g(x)
=2sin[2(x-
π
6
)+
π
3
)]=2sin(2x)的圖象,
故 g(
π
6
)=2sin
π
3
=
3
,
故選B.
點(diǎn)評:本題主要考查兩角和的正弦公式,y=Asin(ωx+∅)的圖象變換規(guī)律,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2ωx+
3
cosωxsinωx(ω>0)
,且函數(shù)f(x)的最小正周期為π.
(1)求ω的值;
(2)若將函數(shù)y=f(x)的圖象向右平移
π
12
個單位長度,再將所得到的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的4倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2ωx+
3
sinωxsin(ωx+
π
2
)+1
(ω>0)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向左平移
π
6
個單位后,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[0,
3
]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2ωx+
3
sinωxcosωx(ω>0)
的最小正周期為3π.
(1)將函數(shù)f(x)的圖象向左平移
π
4
單位后得到函數(shù)g(x)的圖象,求g(x)在區(qū)間[0,2π]上的值域;
(2)若sin(θ+ωπ)=
3
3
,且0<θ<
π
2
,求sinθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=sin2ωx+
3
cosωxsinωx(ω>0)
,且函數(shù)f(x)的最小正周期為π.
(1)求ω的值;
(2)若將函數(shù)y=f(x)的圖象向右平移
π
12
個單位長度,再將所得到的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的4倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省福州市高三第一學(xué)期期末質(zhì)量檢測理科數(shù)學(xué) 題型:選擇題

將函數(shù)f (x)=sin2 x (xR)的圖象向右平移個單位,則所得到的圖象對應(yīng)的函數(shù)的一個單調(diào)遞增區(qū)間是

A.(-,0)    B.(0,)    C.(,)    D.(π)

 

查看答案和解析>>

同步練習(xí)冊答案