如圖,AO⊥平面α,O為垂足,B∈α,BC⊥BO,BC與平面α所成的角為30°,AO=BO=BC=1,則AC的長等于
 
考點:空間向量的夾角與距離求解公式,點、線、面間的距離計算
專題:空間位置關(guān)系與距離
分析:
AC
2
=(
AO
+
OB
+
BC
2,利用已知條件能求出AC的長.
解答:解:∵AO⊥平面α,O為垂足,B∈α,BC⊥BO,
BC與平面α所成的角為30°,AO=BO=BC=1,
AC
2
=(
AO
+
OB
+
BC
2
=1+1+1+2×1×1×cos120°
=2,
∴|
AC
|=
2

故答案為:
2
點評:本題考查線段長的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過拋物線C的焦點F作直線l與拋物線C交于A,B兩點,如果A,B在拋物線C的準線上的射影分別為A1、B1,那么∠A1FB1為( 。
A、
π
6
B、
π
4
C、
π
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為減少“舌尖上的浪費”,某學(xué)校對在該校食堂用餐的學(xué)生能否做到“光盤”,進行隨機調(diào)查,從中隨機抽取男、女生各15名進行了問卷調(diào)查,得到了如下列聯(lián)表:
  男性 女性 合計
做不到“光盤” 12    
能做到“光盤”   10  
合計     30
(Ⅰ)請將上面的列聯(lián)表補充完整,并據(jù)此資料分析:有多大的把握可以認為“在學(xué)校食堂用餐的學(xué)生能否做到‘光盤’與行吧有關(guān)”?
(Ⅱ)若從這15名女學(xué)生中隨機抽取2人參加某一項活動,記其中做不到“光盤”的人數(shù)X,求X的分布列和數(shù)學(xué)期望.K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k0 0.05 0.025 0.010 0.005
k0 3.841 5.024 6.635 7.873

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i為虛數(shù)單位,(
1-i
1+i
2=( 。
A、1B、-1C、iD、-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=
2
1+i
(i為虛數(shù)單位),則|z|=( 。
A、
2
2
B、
1
2
C、1
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD=2,PD⊥底面ABCD,且PD=AD,求:平面PAB的一個法向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在二項式(
x
+
2
4x
)n
的展開式中只有第五項的二項式系數(shù)最大,把展開式中所有的項重新排成一列,則有理項都互不相鄰的概率為( 。
A、
1
6
B、
1
4
C、
1
3
D、
5
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標系中,O為坐標原點,點A的坐標為(0,4),點B的坐標為(4,0),點C的坐標為(-4,0),點P在射線AB上運動,連結(jié)CP與y軸交于點D,連結(jié)BD.過P,D,B三點作⊙Q與y軸的另一個交點為E,延長DQ交⊙Q于點F,連結(jié)EF,BF.

(1)求直線AB的函數(shù)解析式;
(2)當點P在線段AB(不包括A,B兩點)上時.
①求證:∠BDE=∠ADP;
②設(shè)DE=x,DF=y.請求出y關(guān)于x的函數(shù)解析式;
(3)請你探究:點P在運動過程中,是否存在以B,D,F(xiàn)為頂點的直角三角形,滿足兩條直角邊之比為2:1?如果存在,求出此時點P的坐標:如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

參數(shù)方程
x=-2t2
y=4t
(t為參數(shù))表示的曲線不在( 。
A、x軸的上方
B、x軸的下方
C、y軸的左側(cè)
D、y軸的右側(cè)

查看答案和解析>>

同步練習(xí)冊答案