設(shè)a>0,b>0,稱(chēng)
2aba+b
為a,b的調(diào)和平均數(shù).如圖,C為線(xiàn)段AB上的點(diǎn),且AC=a,CB=b,O為AB中點(diǎn),以AB為直徑做半圓.過(guò)點(diǎn)C作AB的垂線(xiàn)交半圓于D.連接OD,AD,BD.過(guò)點(diǎn)C作OD的垂線(xiàn),垂足為E.則圖中線(xiàn)段OD的長(zhǎng)度是a,b的算術(shù)平均數(shù),線(xiàn)段CD的長(zhǎng)度是a,b的幾何平均數(shù),那么a,b的調(diào)和平均數(shù)是線(xiàn)段
DE
DE
的長(zhǎng)度.
分析:有題意可知,Rt△DAC∽R(shí)t△BDC,于是可得
CD
BC
=
AC
CD
,即
CD
b
a
CD
⇒CD2=ab;同理可得,由Rt△DCO∽R(shí)t△EDC⇒CD2=DE•OD,從而可得答案.
解答:解:依題意得,Rt△DAC∽R(shí)t△BDC,
CD
BC
=
AC
CD
,
∵AC=a,CB=b,
CD
b
a
CD
,CD2=ab(射影定理);
同理,Rt△DCO∽R(shí)t△EDC⇒CD2=DE•OD,又OD=
a+b
2
,
∴DE=
CD2
OD
=
2ab
a+b
,此即為a,b的調(diào)和平均數(shù).
故答案為:DE.
點(diǎn)評(píng):本題考查三角形相似及比例的運(yùn)用,考查射影定理的靈活應(yīng)用,體現(xiàn)轉(zhuǎn)化思想與運(yùn)算能力的考查,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)a>0,b>0,稱(chēng)
2aba+b
為a,b的調(diào)和平均數(shù).如圖,C為線(xiàn)段AB上的點(diǎn),且AC=a,CB=b,O為AB中點(diǎn),以AB為直徑做半圓.過(guò)點(diǎn)C作AB的垂線(xiàn)交半圓于D.連接OD,AD,BD.過(guò)點(diǎn)C作OD的垂線(xiàn),垂足為E.則圖中線(xiàn)段OD的長(zhǎng)度是a,b的算術(shù)平均數(shù),線(xiàn)段
 
的長(zhǎng)度是a,b的幾何平均數(shù),線(xiàn)段
 
的長(zhǎng)度是a,b的調(diào)和平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若給定橢圓C:ax2+by2=1(a>0,b>0,a≠b)和點(diǎn)N(x0,y0),則稱(chēng)直線(xiàn)l:ax0x+by0y=1為橢圓C的“伴隨直線(xiàn)”.
(1)若N(x0,y0)在橢圓C上,判斷橢圓C與它的“伴隨直線(xiàn)”的位置關(guān)系(當(dāng)直線(xiàn)與橢圓的交點(diǎn)個(gè)數(shù)為0個(gè)、1個(gè)、2個(gè)時(shí),分別稱(chēng)直線(xiàn)與橢圓相離、相切、相交),并說(shuō)明理由;
(2)命題:“若點(diǎn)N(x0,y0)在橢圓C的外部,則直線(xiàn)l與橢圓C必相交.”寫(xiě)出這個(gè)命題的逆命題,判斷此逆命題的真假,說(shuō)明理由;
(3)若N(x0,y0)在橢圓C的內(nèi)部,過(guò)N點(diǎn)任意作一條直線(xiàn),交橢圓C于A、B,交l于M點(diǎn)(異于A、B),設(shè)
MA
=λ1
AN
,
MB
=λ2
BN
,問(wèn)λ12是否為定值?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年湖北省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)a>0,b>0,已知函數(shù)f(x)=
(Ⅰ)當(dāng)a≠b時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)x>0時(shí),稱(chēng)f(x)為a、b關(guān)于x的加權(quán)平均數(shù).
(i)判斷f(1),f(),f()是否成等比數(shù)列,并證明f()≤f();
(ii)a、b的幾何平均數(shù)記為G.稱(chēng)為a、b的調(diào)和平均數(shù),記為H.若H≤f(x)≤G,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)a>0,b>0,稱(chēng)
2ab
a+b
為a,b的調(diào)和平均數(shù).如圖,C為線(xiàn)段AB上的點(diǎn),且AC=a,CB=b,O為AB中點(diǎn),以AB為直徑做半圓.過(guò)點(diǎn)C作AB的垂線(xiàn)交半圓于D.連接OD,AD,BD.過(guò)點(diǎn)C作OD的垂線(xiàn),垂足為E.則圖中線(xiàn)段OD的長(zhǎng)度是a,b的算術(shù)平均數(shù),線(xiàn)段CD的長(zhǎng)度是a,b的幾何平均數(shù),那么a,b的調(diào)和平均數(shù)是線(xiàn)段______的長(zhǎng)度.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案