橢圓中,過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的直線被橢圓截得的線段長(zhǎng)為,焦點(diǎn)到相應(yīng)準(zhǔn)線的
距離也為,則該橢圓的離心率為          
本試題主要是考查了橢圓的離心率的求解的運(yùn)用。
設(shè)出橢圓的方程,因?yàn)檫^(guò)焦點(diǎn)且垂直于長(zhǎng)軸的直線被橢圓截得的線段長(zhǎng)為,,因?yàn)榻裹c(diǎn)到相應(yīng)準(zhǔn)線的距離為,故解得可知橢圓的離心率為,故答案為。
解決該試題的關(guān)鍵是設(shè)出方程,然后利用過(guò)焦點(diǎn)的垂直于長(zhǎng)軸的直線被橢圓截得的線段長(zhǎng)為,得到離心率。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(滿分10分)(Ⅰ) 設(shè)橢圓方程的左、右頂點(diǎn)分別為,點(diǎn)M是橢圓上異于的任意一點(diǎn),設(shè)直線的斜率分別為,求證為定值并求出此定值;
(Ⅱ)設(shè)橢圓方程的左、右頂點(diǎn)分別為,點(diǎn)M是橢圓上異于的任意一點(diǎn),設(shè)直線的斜率分別為,利用(Ⅰ)的結(jié)論直接寫(xiě)出的值。(不必寫(xiě)出推理過(guò)程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的左右焦點(diǎn)分別為、,短軸兩個(gè)端點(diǎn)為、,且四邊形是邊長(zhǎng)為2的正方形。
(1)求橢圓方程;
(2)若分別是橢圓長(zhǎng)軸的左右端點(diǎn),動(dòng)點(diǎn)滿足,連接,交橢圓于點(diǎn);證明:為定值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)在橢圓上,則的最大值為(    )
A.B.-1C.2D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)橢圓:的兩個(gè)焦點(diǎn)為,點(diǎn)在橢圓上,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過(guò)圓的圓心,交橢圓兩點(diǎn),且關(guān)于點(diǎn)對(duì)稱,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)橢圓的標(biāo)準(zhǔn)方程為,若其焦點(diǎn)在軸上,則的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

標(biāo)準(zhǔn)方程下的橢圓的短軸長(zhǎng)為,焦點(diǎn),右準(zhǔn)線軸相交于點(diǎn),且,過(guò)點(diǎn)的直線和橢圓相交于點(diǎn).
(1)求橢圓的方程和離心率;
(2)若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓=1的離心率為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線
于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(3)當(dāng)P不在軸上時(shí),在曲線上是否存在兩個(gè)不同點(diǎn)C、D關(guān)于對(duì)稱,若存在,
求出的斜率范圍,若不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案